种群水平生态风险评价方法概述及其在环境管理中的应用

廖伟, 刘娜, 冯承莲, 徐建, 王子健, 金小伟. 种群水平生态风险评价方法概述及其在环境管理中的应用[J]. 生态毒理学报, 2020, 15(1): 2-16. doi: 10.7524/AJE.1673-5897.20190829002
引用本文: 廖伟, 刘娜, 冯承莲, 徐建, 王子健, 金小伟. 种群水平生态风险评价方法概述及其在环境管理中的应用[J]. 生态毒理学报, 2020, 15(1): 2-16. doi: 10.7524/AJE.1673-5897.20190829002
Liao Wei, Liu Na, Feng Chenglian, Xu Jian, Wang Zijian, Jin Xiaowei. Overview of Population-Level Ecological Risk Assessment and Its Application in Environmental Management[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 2-16. doi: 10.7524/AJE.1673-5897.20190829002
Citation: Liao Wei, Liu Na, Feng Chenglian, Xu Jian, Wang Zijian, Jin Xiaowei. Overview of Population-Level Ecological Risk Assessment and Its Application in Environmental Management[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 2-16. doi: 10.7524/AJE.1673-5897.20190829002

种群水平生态风险评价方法概述及其在环境管理中的应用

    作者简介: 廖伟(1987-),男,博士研究生,研究方向为水质基准和生态风险评价,E-mail:lovy21@163.com
  • 基金项目:

    国家自然科学基金资助项目(41977364);北京市优秀人才培养资助项目;国家水体污染控制与治理科技重大专项(2017ZX07302-001)

  • 中图分类号: X171.5

Overview of Population-Level Ecological Risk Assessment and Its Application in Environmental Management

  • Fund Project:
  • 摘要: 生态风险评价的目的是保护生态系统功能的完整性、稳定性和持久性,为环境风险管理提供理论依据。然而,目前常见的用于保护生物的化学污染物浓度阈值大多是以个体水平的毒性试验结果为基础,忽略了物种在时间和空间相互作用等因素,不能够完全保护生态环境安全和生态系统功能的延续性。本文从生态风险评价的概念、目的和意义引出种群水平生态风险评价在环境管理应用的重要性,综述了种群水平生态风险评价的科学问题(如密度依赖、遗传变异和空间结构等),归纳了种群水平风险评价主要模型方法及其应用(如Euler-Lotka方程、预测矩阵、个体模型、空间模型和动态能量预算模型等),列举了各国现有法律法规中关于种群水平生态风险评价的规定,以期为种群水平生态风险评价方法研究及在环境管理中的应用提供有益借鉴。
  • 加载中
  • Suter G W. Applicability of indicator monitoring to ecological risk assessment[J]. Ecological Indicators, 2002, 1(2):101-112
    雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J].化学进展, 2009, 21(Z1):350-358

    Lei B L, Huang S B, Wang Z J. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009, 21(Z1):350-358(in Chinese)

    金小伟,王业耀,王子健.淡水水生态基准方法学研究:数据筛选与模型计算[J].生态毒理学报, 2014, 9(1):1-13

    Jin X W, Wang Y Y, Wang Z J. Methodologies for deriving aquatic life criteria (ALC):Data screening and model calculating[J]. Asian Journal of Ecotoxicology, 2014, 9(1):1-13(in Chinese)

    刘娜,金小伟,王业耀,等.生态毒理数据筛查与评价准则研究[J].生态毒理学报, 2016, 11(3):1-10

    Liu N, Jin X W, Wang Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data[J]. Asian Journal of Ecotoxicology, 2016, 11(3):1-10(in Chinese)

    Walton W E, Compton S M, Allan J D, et al. The effect of acid stress on survivorship and reproduction of Daphnia pulex (Crustacea, Cladocera)[J]. Canadian Journal of Zoology, 1982, 60(4):573-579
    Bechmann R K. Use of life-tables and LC50 tests to evaluate chronic and acute toxicity effects of copper on the marine coperpod Tisbe furcata (Baird)[J]. Environmental Toxicology and Chemistry, 1994, 13(9):1509-1517
    金香琴.多环芳烃胁迫对淡水生物种群生长及种间关系的影响及其生态风险评价[D].长春:东北师范大学, 2014:8-11 Jin X Q. Effect and ecological risk assessment of polycyclic aromatic hydrocarbons stress on populations growth and interspecific relationships of freshwater aquatic organisms[D]. Changchun:Northeast Normal University, 2014:8

    -11(in Chinese)

    Walthall W K, Stark J D. Comparison of two populationlevel ecotoxicological endpoints:The intrinsic (rm) and instantaneous (ri) rates of increase[J]. Environmental Toxicology and Chemistry, 1997, 16(5):1068-1073
    Gotelli N J. A Primer of Ecology[M]. Sunderland:Sinauer Associates Inc., 1995:340-365
    Begon M, Townsend C R, Harper J L. Ecology:From Individuals to Ecosystem (Fourth Edition)[M]. Oxford:Blackwell, 2016:90-94
    Barnthouse L W, Munns W R Jr., Sorensen M T. Population-level Ecological Risk Assessment[M]. New York:CRC Press, 2008:1-210
    刘娜,金小伟,王业耀,等.三唑酮对青鳉鱼和大型溞不同测试终点的毒性效应评价[J].中国环境科学, 2016, 36(7):2205-2211

    Liu N, Jin X W, Wang Y Y, et al. Toxicity effect of triadimefon based on Oryzias latipes and Daphnia magna with different test endpoints[J]. China Environmental Science, 2016, 36(7):2205-2211(in Chinese)

    金小伟,王子健,王业耀,等.淡水水生态基准方法学研究:繁殖/生殖毒性类化合物水生态基准探讨[J].生态毒理学报, 2015, 10(1):31-39

    Jin X W, Wang Z J, Wang Y Y, et al. Methodologies for deriving aquatic life criteria (ALC):Discussion of ALC for chemicals causing reproductive toxicity[J]. Asian Journal of Ecotoxicology, 2015, 10(1):31-39(in Chinese)

    Maltby L, Kedwards T J, Forbes V E, et al. Linking Individual-level Responses and Population-level Consequences[M]//Baird D J, Burton G A Jr. Ecological Variability:Separating Natural from Anthropogenic Causes of Ecosystem Impairment. Pensacola:SETAC, 2001:27-82
    Galic N, Hommen U, Boveco J M, et al. Potential application of population models in the European ecological risk assessment of chemicals Ⅱ:Review of models and their potential to address environmental protection aims[J]. Integrated Environmental Assessment and Management, 2010, 6(3):338-360
    Kramer V J, Etterson M A, Markus H, et al. Adverse outcome pathways and ecological risk assessment:Bridging to population-level effects[J]. Environmental Toxicology and Chemistry, 2011, 30(1):64-76
    Gentile J H, Gentile S M, Hoffman G.The effects of a chronic mercury exposure on survival, reproduction and population dynamics of Mysidophsis bahia[J]. Environmental Toxicology and Chemistry, 1983, 2:61-68
    Forbes V E, Calow P. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology?[J]. Environmental Toxicology and Chemistry, 1999, 18(7):1544-1556
    Tanaka Y, Nakanishi J. Model selection and parameterization of the concentration-response functions for population-level effects[J]. Environmental Toxicology and Chemistry, 2001, 20(8):1857-1865
    安伟.内分泌干扰物质种群水平生态风险评价方法和应用[D].北京:北京大学, 2006:7-8 An W. Methodology and application of population risk assessment for endocrine disrupting chemicals (EDCs)[D]. Beijing:Peking University, 2006:7

    -8(in Chinese)

    Nakamaru M, Iwasa Y, Nakanishi J. Extinction risk to herring gull populations from DDT exposure[J]. Environmental Toxicology and Chemistry, 2002, 21(1):195-202
    An W, Hu J Y, Yao F. A method of assessing ecological risk to night heron, Nycticorax nycticorax, population persistence from dichlorodiphenyltrichloroethane exposure[J]. Environmental Toxicology and Chemistry, 2006, 25(1):281-286
    Cappuccino N, Price P W. Population Dynamics:New Approaches and Synthesis[M]. San Diego:Academic Press, 1995:3-15
    Begon M, Harper J L. Ecology:Individuals, Populations and Communities[M]. Boston:Blackwell Scientific Publications, 1990:1-3
    Underwoos A J. The analysis of stress in natural-populations[J]. Biological Journal of the Linnean Society, 1989, 37(1-2):51-78
    Sutherland W J. Sustainable exploitation:A review of principles and methods[J]. Wildlife Biology, 2001, 7(3):131-140
    Pastorok R A, Akcakaya H R, Regan H, et al. Role of ecological modeling in risk assessment[J]. Human and Ecological Risk Assessment, 2003, 9(4):939-972
    Barnthouse L W. Population-level Effects[M]//Suter G WⅡ. Ecological Risk Assessment. Boca Raton:Lewis Publishers, 1993:247-274
    Hartl D L, Clark A G. Principles of Population Genetics. Third Edition[M]. Sunderland:Sinauer Associates Inc., 1997:54
    Jackson R B, Linder C R, Lynch M, et al. Linking molecular insight and ecological research[J]. Trends in Ecology & Evolution, 2002, 17(9):409-414
    Collins F S, Green E D, Guttmacher A E, et al. A vision for the future of genomics research[J]. Nature, 2003, 422(6934):835-847
    Taylor M, Feyereisen R. Molecular biology and evolution of resistance to toxicants[J]. Molecular Biology and Evolution, 1996, 13(6):719-734
    Shaw A J. The Evolution of Heavy Metal Tolerance in Plants:Adaptations, Limits, and Costs[M]//Forbes V E. Genetics and Ecotoxicology. Philadelphia:Taylor and Francis, 1999:11-25
    Hahn M E, Karchner S I, Franks D G, et al. Aryl hydrocarbon receptor polymorphisms and dioxin resistance in Atlantic killifish (Fundulus heteroclitus)[J]. Pharmacogenetics, 2004, 14(2):131-143
    张大勇,雷光春, Ilkka Hanki.集合种群动态:理论与应用[J].生物多样性, 1999, 7(2):81-90

    Zhang D Y, Lei G C, Hank I. Metapopulation dynamics:Theory and applications[J]. Chinese Biodiverstiy, 1999, 7(2):81-90(in Chinese)

    United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment[R]. Washington DC:US EPA, 1998
    Hanski I A, Simberloff D. The Metapopulation Approach, Its History, Conceptual Domain and Application to Conservation[M]//Hanski I A, Gilpin M E. Metapopulation Biology:Ecology, Genetics and Evolution. New York:Academic Press, 1997:5-26
    Hanski I A. Metapopulation Ecology[M]. New York:Oxford University Press, 1999:328
    McLaughlin J F, Landis W G. Effects of Environmental Contaminants in Spatially Structured Environments[M]//Albers P H. Environmental Contaminants in Terrestrial Vertebrates:Effects on Populations, Communities, and Ecosystems. Pensacola:SETAC, 2000:1-544
    邬建国.景观生态学--概念与理论[J].生态学杂志, 2000, 19(1):42-52

    Wu J G. Landscape ecology-Concepts and theories[J]. Chinese Journal of Ecology, 2000, 19(1):42-52(in Chinese)

    Rohr J R, Salice C J, Nisbet R M. The pros and cons of ecological risk assessment based on data from different levels of biological organization[J]. Critical Reviews in Toxicology, 2016, 46(9):756-784
    Malthus T R. An Essay on the Principle of Population as It Affects the Future Improvement of Society[M]. London:Johnson, 1798:36-54
    Adams B M, Banks H T, Banks J E, et al. Population dynamics models in plant-insect herbivore-pesticide interactions[J]. Mathematical Biosciences, 2005, 196(1):39-64
    Hendrisk A J, Enserink E L. Modelling response of single-species populations to microcontaminants as a function of species size with examples for waterfleas (Daphnia magna) and cormorants (Phalacrocorax carbo)[J]. Ecological Modelling, 1996, 88(1-3):247-262
    Nakamaru M, Iwasa Y, Nakanishi J. Extinction risk to bird populations caused by DDT exposure[J]. Chemosphere, 2003, 53(4):377-387
    Barnthouse L W. Quantifying population recovery rates for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2004, 23(2):500-508
    Lotka A J. Elements of Physical Biology[M]. Baltimore:Williams and Wilkins Co., 1925
    Salice C J, Miller A T. Population-level responses to longterm cadmium exposure in two strains of the freshwater gastropod Biomphalaria glabrata:Results from a life-table response experiment[J]. Environmental Toxicology and Chemistry, 2003, 22(3):678-688
    官文江,唐琳,田思泉,等.利用生物量动态模型与Euler-Lotka方程估算亲体-补充量模型的陡度参数[J].中国海洋大学学报:自然科学版, 2016, 46(10):48-56

    Guan W J, Tang L, Tian S Q, et al. Using biomass dynamic model and Euler-Lotka equation to estimate steepness of stock-recruitment relationship[J]. Periodical of Ocean University of China, 2016, 46(10):48-56(in Chinese)

    Breitholtz M, Wollenberger L, Dinan L. Effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra spinipes[J]. Aquatic Toxicology, 2003, 63:103-118
    黄瑛.火腿许水蚤的繁殖生物学研究和在三丁基氧化锡毒性评价中的应用[D].青岛:中国海洋大学, 2008:90-96 Huang Y. Reproductive biology of Schmackeria poplesia and its use in ecotoxicological study of bis (tributyltin) oxide[D]. Qingdao:Ocean University of China, 2008:90

    -96(in Chinese)

    Leslie P H. On the use of matrices in certain population mathematics[J]. Biometrika, 1945, 33:183-212
    Caswell H. Matrix population models:Construction, analysis, and interpretation. 2nd edition[M]. Sunderland:Sinauer Associates Inc., 2001
    Easterling M R, Ellner S P, Dixon P M. Size-specific sensitivity:Applying a new structured population model[J]. Ecology, 2000, 81(3):694-708
    Kuhn A, Munns W R, Champlin N D, et al. Evaluation of the efficacy of extrapolation population modeling to predict the dynamics of Americamysis bahia populations in the laboratory[J]. Environmental Toxicology and Chemistry, 2001, 20(1):213-221
    Kuhn A, Munns W R, Poucher S, et al. Prediction of population-level response from mysid toxicity test data using population modeling techniques[J]. Environmental Toxicology and Chemistry, 2000, 19(9):2364-2371
    Barnthouse L W, Suter G W, Rosen A E. Risks of toxic contaminants to exploited fish populations:Influence of life history, data uncertainty and exploitation intensity[J]. Environmental Toxicology and Chemistry, 1990, 9(3):297-311
    Grimm V, Martin B T. Mechanistic effect modeling for ecological risk assessment:Where to go from here?[J]. Integrated Environmental Assessment and Management, 2013, 9(3):e58-e63
    Kooijman S A, Metz J A. On the dynamics of chemically stressed populations:The deduction of population consequences from effects on individuals[J]. Ecotoxicology and Environmental Safety, 1984, 8(3):254-274
    Gurney W S C, Mccauley E, Nisbet R M, et al. The physiological ecology of hysiological ecology of Daphnia-A dynamic-model of growth and reproduction[J]. Ecology, 1990, 71(2):716-732
    Rose K A, Cowan J H. Data, models, and decisions in US Marine Fisheries management:Lessons for ecologists[J]. Annual Review of Ecology Evolution and Systematics, 2003, 34:127-151
    Rose K A, Cowan J H. Individual-based model of youngof-the-year striped bass population-synamics. 1. Model descriprion and base-line simulations[J]. Transactions of the American Fisheries Society, 1993, 122(3):415-438
    Hallam T G, Lassiter R R, Li J, et al. Modelling individuals employing an integrated energy response:Application to Daphnia[J]. Ecology, 1990, 71(3):938-954
    Martin B T, Zimmer E I, Grimm V, et al. Dynamic energy budget theory meets individual-based modelling:A generic and accessible implementation[J]. Methods in Ecology and Evolution, 2012, 3(2):445-449
    Muller E B, Hanna S K, Lenihan H S, et al. Impact of engineered zinc oxide nanoparticles on the energy budgets of Mytilus galloprovincialis[J]. PLOS One, 2014, 94(4):29-36
    邬建国. Metapopulation (复合种群)究竟是什么?[J].植物生态学报, 2000, 24(1):123-126

    Wu J G. What is metapopulation, really?[J]. Acta Phytoecologica Sinica, 2000, 24(1):123-126(in Chinese)

    Kooijman S A L M, Bedaux J J M. Analysis of toxicity tests on Daphnia survival and reproduction[J]. Water Research, 1996, 30(7):1711-1123
    Chizinski C J, Sharma B, Pope K L, et al. A bioenergetic model for zebrafish Danio rerio (Hamilton)[J]. Journal of Fish Biology, 2008, 73(1):35-43
    Spromberg J A, John B M, Landis W G. Metapopulation dynamics:Indirect effects and multiple distinct outcomes in ecological risk assessment[J]. Environmental Toxicology and Chemistry, 1998, 17(8):1640-1649
    Chaumot A, Charles S, Flammarion P, et al. Ecotoxicology and spatial modeling in population dynamics:An illustration with brown trout[J]. Environmental Toxicology and Chemistry, 2003, 22(5):958-969
    Chaumot A, Charles S, Flammarion P, et al. Using aggregation methods to assess toxicant effects on population dynamics in spatial systems[J]. Ecological Applications, 2002, 12(6):1771-1784
    Ducrot V, Pery A R R, Mons R, et al. Dynamic energy budget as a basis to model population-level effects of zinc-spiked sediments in the gastropod Valvata piscinalis[J]. Environmental Toxicology and Chemistry, 2007, 26(8):1774-1783
    Linkov I, Burmistrov D, Cura J, et al. Risk-based management of contaminated sediments:Consideration of spatial and temporal patterns in exposure modeling[J]. Environmental Science & Technology, 2002, 36(2):238-246
    Kooijman S A L M. Energy budgets can explain body size relations[J]. Journal of Theoretical Biology, 1986, 121(3):269-282
    Kooijman S A L M. Dynamic Energy Budgets in Biological Systems:Theory and Applications in Ecotoxicology[M]. Cambridge:Cambridge University Press, 1993:1-350
    Kooijman S A L M. Dynamic Energy and Mass Budgets in Biological Systems[M]. Cambridge:Cambridge University Press, 2000
    Nisbet R M, Muller E B, Kooijman S A L M. From molecules to ecosystems through dynamic energy budget models[J]. Journal of Animal Ecology, 2000, 69(6):913-926
    Sibly R M, Grimm V, Martin B T, et al. Representing the acquisition and use of energy by individuals in agentbased models of animal populations[J]. Methods in Ecology and Evolution, 2013, 4(2):151-161
    Klanjscek T, Nisbet R M, Priester J H, et al. Modeling physiological processes that relate toxicant exposure and bacterial population dynamics[J]. PLOS One, 2012, 7(2):e26955
    Manyin T, Rowe C L. Modeling effects of cadmium on population growth of Palaemonetes pugio:Results of a full life cycle exposure[J]. Aquatic Toxicology, 2008, 88(2):111-120
    Servia M J, Pery A R R, Heydorff M, et al. Effects of copper on energy metabolism and larval development in the midge Chironomus riparius[J]. Ecotoxicology, 2006, 15(3):229-240
    United States Environmental Protection Agency (US EPA). Wildlife exposure factors handbook[R]. Washington DC:Office of Research and Development, 1993
    Hansen F T, Forbes V E, Forbes T L. Effects of 4-n-nonylphenol on life-history traits and population dynamics of a polychaete[J]. Ecological Applications, 1999, 9(2):482-495
    United States Environmental Protection Agency (US EPA).Managing ecological risks at EPA:Issues and recommendations for progress[R]. Washington DC:Office of Research and Development, 1994
    Environment Canada. Environmental assessments of priority substances under the Canadian Environmental Protection Act. Guidance manual version 1.0. Chemicals Evaluation Division. PS/2/CC/3E[R]. Ottawa:Environment Canada, 1997
    European Chemicals Bureau. Technical guidance document on risk assessment, Part II[C]. Ispra, Italy:European Commission Joint Research Centre, 2003
    叶旌,刘洪英,周荃.美国有毒物质控制法修订进展及对我国化学品环境管理的启示[J].科技管理研究, 2019, 39(6):222-228

    Ye J, Liu H Y, Zhou Q. Progress of the revision of the toxic substances control act of the United States and enlightenment to China's chemicals environmental management[J]. Science and Technology Management Research, 2019, 39(6):222-228(in Chinese)

    叶亚平,单正军.美国瑞典日本农药环境管理综述[J].农村生态环境, 2000, 16(4):51-53

    , 57 Ye Y P, Shan Z J. Management of pesticides in USA, Sweden and Japan[J]. Rural Eco-Environment, 2000, 16(4):51-53, 57(in Chinese)

    United States Environmental Protection Agency (US EPA). The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and Federal Food, Drug, and Cosmetic Act (FFDCA) as am ended by the Food Quality Protection Act (FQPA) of August 3, 1996. 73L97001, March[R]. Washington DC:Office of Pesticide Programs, 1997
    United States Environmental Protection Agency (US EPA). Issuance of final guidance:Ecological risk assessment and risk management principles for superfund sites[R]. Washington DC:Office of Solid Waste and Emergency Response Directive, 1999
    成克武,周晓芳,张炜银.美国《濒危物种法》及其相关政策措施[J].世界林业研究, 2008, 21(4):57-62

    Cheng K W, Zhou X F, Zhang W Y. The implication of endangered species act and its related polices on the conservation of wild species in China[J]. World Forestry Research, 2008, 21(4):57-62(in Chinese)

    Kriz C, Delorme P, Hodge V, et al. Assessment endpoints for ecological risk assessments of pesticides:A scientific perspective[C]//Hedley K, Roe S, Niimi A J. Proceedings of the 30th Aquatic Toxicity Workshop. Ottawa, Ontario:National Water Research Institute, Canada Centre for Inland Waters, 2003
    Campbell P J, Aernold D J S, Brock T C M, et al. Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP)[C]. Lacanau Ocean, France:Proceedings of the HARAP Workshop, 1998
  • 加载中
计量
  • 文章访问数:  2998
  • HTML全文浏览数:  2998
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-29

种群水平生态风险评价方法概述及其在环境管理中的应用

    作者简介: 廖伟(1987-),男,博士研究生,研究方向为水质基准和生态风险评价,E-mail:lovy21@163.com
  • 1. 南昌大学资源环境与化工学院, 鄱阳湖环境与资源利用教育部重点实验室, 南昌 330031;
  • 2. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012;
  • 3. 中国科学院生态环境研究中心, 北京 100085;
  • 4. 中国环境监测总站, 北京 100012
基金项目:

国家自然科学基金资助项目(41977364);北京市优秀人才培养资助项目;国家水体污染控制与治理科技重大专项(2017ZX07302-001)

摘要: 生态风险评价的目的是保护生态系统功能的完整性、稳定性和持久性,为环境风险管理提供理论依据。然而,目前常见的用于保护生物的化学污染物浓度阈值大多是以个体水平的毒性试验结果为基础,忽略了物种在时间和空间相互作用等因素,不能够完全保护生态环境安全和生态系统功能的延续性。本文从生态风险评价的概念、目的和意义引出种群水平生态风险评价在环境管理应用的重要性,综述了种群水平生态风险评价的科学问题(如密度依赖、遗传变异和空间结构等),归纳了种群水平风险评价主要模型方法及其应用(如Euler-Lotka方程、预测矩阵、个体模型、空间模型和动态能量预算模型等),列举了各国现有法律法规中关于种群水平生态风险评价的规定,以期为种群水平生态风险评价方法研究及在环境管理中的应用提供有益借鉴。

English Abstract

参考文献 (93)

目录

/

返回文章
返回