氧化石墨烯抗菌性及生物安全性研究进展

宋雅丽, 王林变, 高莉, 孙友谊, 王海宾, 赵英虎, 柴艳芳. 氧化石墨烯抗菌性及生物安全性研究进展[J]. 生态毒理学报, 2020, 15(1): 109-118. doi: 10.7524/AJE.1673-5897.20190628001
引用本文: 宋雅丽, 王林变, 高莉, 孙友谊, 王海宾, 赵英虎, 柴艳芳. 氧化石墨烯抗菌性及生物安全性研究进展[J]. 生态毒理学报, 2020, 15(1): 109-118. doi: 10.7524/AJE.1673-5897.20190628001
Song Yali, Wang Linbian, Gao Li, Sun Youyi, Wang Haibin, Zhao Yinghu, Chai Yanfang. Progress on Antibacterial and Biosafety Research of Graphene Oxide[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 109-118. doi: 10.7524/AJE.1673-5897.20190628001
Citation: Song Yali, Wang Linbian, Gao Li, Sun Youyi, Wang Haibin, Zhao Yinghu, Chai Yanfang. Progress on Antibacterial and Biosafety Research of Graphene Oxide[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 109-118. doi: 10.7524/AJE.1673-5897.20190628001

氧化石墨烯抗菌性及生物安全性研究进展

    作者简介: 宋雅丽(1991-),女,硕士,研究方向为纳米材料的生物安全性,E-mail:2680654714@qq.com
  • 基金项目:

    山西省高等学校科技创新项目(201802075);山西省重点研发计划资助项目(201803D221013-4, 201803D221026-4);山西省自然科学青年基金资助项目(201601D202090);纳米功能复合材料山西省重点实验室开放基金资助项目(NFCM201603)

  • 中图分类号: X171.5

Progress on Antibacterial and Biosafety Research of Graphene Oxide

  • Fund Project:
  • 摘要:

    氧化石墨烯是一种表面有丰富含氧官能团的石墨烯衍生物,具有与石墨烯相似的二维蜂窝状晶格结构,从而导致了其具有电学、光学、力学特性和良好的生物相容性,被广泛应用于材料学、生物医学和药物传递等诸多领域。因氧化石墨烯日益增多的生产和使用,其在空气、水和土壤中大量积累,引发了人们对其生物安全性的高度关注。以微生物、陆生动植物和水生动植物为分类标准,综述了近几年氧化石墨烯对微生物、动物和植物的毒性影响,总结并分析了三者的毒性机理,比较了不同生存环境下其对动植物毒性影响的不同,旨在更加全面地揭示氧化石墨烯的生物安全性,为氧化石墨烯安全使用剂量和其功能化应用提供一定的参考。

  • 加载中
  • Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191
    徐成.氧化石墨烯复合纳米材料的制备及其在药物递送和生物成像上的应用[D].长沙:湖南大学, 2016:110 Xu C. Graphene oxide composite nanomaterials preparation and its application in drug delivery and bioimaging[D]. Changsha:Hunan University, 2016:110(in Chinese)
    刘智勇.基于氧化石墨烯/聚合物光伏特性的研究[D].北京:北京交通大学, 2011:9 Liu Z Y. Study on photovoltaic properties of graphene oxide/polymer[D]. Beijing:Beijing Jiaotong University, 2011:9(in Chinese)
    宋爽,储林芳,吕中,等.氧化石墨烯选择性抗菌性能研究[J].武汉大学学报:理学版, 2017, 63(4):283-288

    Song S, Chu L F, Lv Z, et al. Research on the selective antibacterial activities of graphene oxide[J]. Journal of Wuhan University:Natural Science Edition, 2017, 63(4):283-288(in Chinese)

    张锦,许少波,陈军,等.石墨烯类材料在疾病诊断治疗方面的研究进展[J].材料导报, 2015, 29(3):148-151

    Zhang J, Xu S B, Chen J, et al. Advances in graphenebased materials for diagnosis and treatment of disease[J]. Materials Review, 2015, 29(3):148-151(in Chinese)

    杜夏夏,舒刚,陈宗艳.氧化石墨烯在生物医学领域的应用[J].功能材料, 2018,49(8):8040-8047

    Du X X, Shu G, Chen Z Y. The application of graphene oxide in the field of biomedicine[J]. Journal of Functional Materials, 2018, 49(8):8040-8047(in Chinese)

    Combarros R G, Collado S, Díaz M. Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida[J]. Journal of Hazardous Materials, 2016, 310:246-252
    Zhang M, Yu Q, Liang C, et al. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris[J]. Ecotoxicology and Environmental Safety, 2016, 132:372-378
    Zhu S, Luo F, Zhu B, et al. Toxicological effects of graphene oxide on Saccharomyces cerevisiae[J]. Toxicology Research, 2017, 6(4):1039
    叶十一.二维类石墨烯材料抗病毒机理研究[D].武汉:华中农业大学, 2016:131 Ye S Y. Two-dimensional graphene materials anti-virus mechanism[D]. Wuhan:Huazhong Agricultural University, 2016:131(in Chinese)
    Ruiz O N, Fernando K A, Wang B, et al. Graphene oxide:A nonspecific enhancer of cellular growth[J]. ACS Nano, 2011, 5(10):8100-8107
    Varela J N, Amstalden M C, Pereira R F, et al. Haemophilus influenzae porine ompP2 gene transfer mediated by graphene oxide nanoparticles with effects on transformation process and virulence bacterial capacity[J]. Journal of Nanobiotechnology, 2014, 12(1):14
    Hui L, Piao J G, Auletta J, et al. Availability of the basal planes of graphene oxide determines whether it is antibacterial[J]. ACS Applied Materials & Interfaces, 2014, 6(15):13183-13190
    Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7):4317-4323
    Chen J N, Wang X P, Han H Y. A new function of graphene oxide emerges:Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae[J]. Journal of Nanoparticle Research, 2013, 15:1658
    Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:Membrane and oxidative stress[J]. Acs Nano, 2011, 5(9):6971-6980
    张斌.氧化石墨烯和石墨烯的抗菌活性研究[C].北京:2014年(首届)抗菌科学与技术论坛, 2014
    Liu S B, Hu M, Zeng T Y, et al. Lateral dimension dependent antibacterial activity of graphene oxide sheets[J]. Langmuir, 2012, 28(33):12364-12372
    Zhao S, Wang Q, Zhao Y, et al. Toxicity and translocation of graphene oxide in Arabidopsis thaliana[J]. Environmental Toxicology and Pharmacology, 2015, 39(1):145-156
    胡献刚.氧化石墨烯联合砷对小麦生态毒性[C].广州:中国毒理学会第六届全国毒理学大会, 2013
    Chen L, Wang C, Li H, et al. Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat[J]. Environmental Science & Technology, 2017, 51(17):10146-10153
    Chen L Y, Yang S N, Liu Y, et al. Toxicity of graphene oxide to naked oats (Avena sativa L.) in hydroponic and soil cultures[J]. RSC Advances, 2018, 8(28):15336-15343
    Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12):3907-3919
    Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem[J]. Environmental Pollution, 2017, 232:123-136
    Hu X, Lu K, Mu L, et al. Interactions between graphene oxide and plant cells:Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders[J]. Carbon, 2014, 80(1):665-676
    Chang Y, Yang S T, Liu J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Letters, 2011, 200(3):201-210
    木魁,李登坤,尚梦婷,等.氧化石墨烯对人肺腺癌细胞的毒性产生的剂量效应[J].阜阳师范学院学报:自然科学版, 2017, 34(3):44-48

    Mu K, Li D K, Shang M T, et al. Dosage effect of graphene oxide on the toxicity of human lung adenocarcinoma[J]. Journal of Fuyang Teachers College:Natural Science Edition, 2017, 34(3):44-48(in Chinese)

    Zhang W, Yan L, Li M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells[J]. Toxicology Letters, 2015, 237(2):61-71
    Fu C, Liu T, Li L, et al. Effects of graphene oxide on the development of offspring mice in lactation period[J]. Biomaterials, 2015, 40(3):23-31
    Liang S, Xu S, Zhang D, et al. Reproductive toxicity of nanoscale graphene oxide in male mice[J]. Nanotoxicology, 2015, 9(1):92-105
    Bernabò N, Fontana A, Sánchez M R, et al. Graphene oxide affects in vitro, fertilization outcome by interacting with sperm membrane in an animal model[J]. Carbon, 2018, 129:428-437
    Pelin M, Fusco L, León V, et al. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes[J]. Scientific Reports, 2017, 7:40572
    张颖,安文珍,李康,等.氧化石墨烯对大鼠角膜上皮细胞的致损伤作用[J].眼科新进展, 2017, 37(1):1-4

    Zhang Y, An W Z, Li K, et al. Damage effects of graphene oxide on corneal epithelial cells in rats[J]. Recent Advances in Ophthalmology, 2017, 37(1):1-4(in Chinese)

    Contrerastorres F F, Rodríguezgalván A, Guerrerobeltrán C E, et al. Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells[J]. Materials Science & Engineering C, 2017, 73:633-642
    Ding Z, Zhang Z, Ma H, et al. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin[J]. ACS Applied Materials & Interfaces, 2014, 6(22):19797-19807
    Dziewiecka M, Karpeta-Kaczmarek J, Augustyniak M, et al. Short-term in vivo, exposure to graphene oxide can cause damage to the gut and testis[J]. Journal of Hazardous Materials, 2017, 328:80-89
    Yang R, Ren M, Rui Q, et al. A mir-231-regulated protection mechanism against the toxicity of graphene oxide in nematode Caenorhabditis elegans[J]. Scientific Reports, 2016, 6:32214
    Mendonça M C, Soares E S, de Jesus M B, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier:An in vitro and in vivo study[J]. Molecular Pharmaceutics, 2016, 13(11):3913-3924
    涂育松,方海平.石墨烯和氧化石墨烯对细胞脂膜破坏作用研究[J].中国科学:物理学力学天文学, 2016, 46(6):1-11

    Tu Y S, Fang H P. Destructive extraction of phospholipids from cell membranes by graphene and graphene oxide nanosheets[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(6):1-11(in Chinese)

    Lammel T, Boisseaux P, Fernandez-Cruz M L, et al. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2[J]. Particle and Fibre Toxicology, 2013, 10(1):10-27
    Chen J, Zhou G, Chen L, et al. Interaction of graphene and its oxide with lipid membrane:A molecular dynamics simulation study[J]. Journal of Physical Chemistry C, 2016, 120(11):6225-6231
    Zhi L, Qu M, Ren M, et al. Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans[J]. Carbon, 2017, 113:122-131
    Bai Y, Zhu M, Cao Y, et al. Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme[J]. Colloids & Surfaces B:Biointerfaces, 2017, 154:96-103
    Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals[J]. Regulatory Toxicology and Pharmacology, 2017, 85:7-24
    Chng E L, Chua C K, Pumera M. Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets[J]. Nanoscale, 2014, 6(18):10792-10797
    张倩. GO对4种微藻的致毒效应研究[D].青岛:中国海洋大学, 2015:74 Zhang Q. Study on the toxic effects of GO on four kinds of microalgae[D]. Qingdao:Ocean University of China, 2015:74(in Chinese)
    Hu C, Wang Q, Zhao H, et al. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis[J]. Chemosphere, 2015, 128:184-190
    胡乃涛,胡长伟.氧化石墨烯对浮萍生长的抑制作用[J].云南化工, 2016, 43(5):13-17

    Hu N T, Hu C W. Growth inhibition effect of graphene oxide on duckweed Lemna minor L.[J]. Yunnan Chemical Technology, 2016, 43(5):13-17(in Chinese)

    Lin X, Chen L, Hu X, et al. Toxicity of graphene oxide to white moss Leucobryum glaucum[J]. RSC Advances, 2017, 7(79):50287-50293
    Du S, Zhang P, Zhang R, et al. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus[J]. Chemosphere, 2016, 164:499-507
    Zhao J, Cao X, Wang Z, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J]. Water Research, 2016, 111:18-27
    石柳,王栋,张瑛,等.氧化石墨烯对大型溞的生物毒性效应研究[J].生态毒理学报, 2017, 12(3):416-424

    Shi L, Wang D, Zhang Y, et al. The toxic effects of graphene oxide on Crustacean Daphnia magna[J]. Asian Journal of Ecotoxicology, 2017, 12(3):416-424(in Chinese)

    Souza J P, Venturini F P, Santos F, et al. Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide[J]. Chemosphere, 2018, 190:218-224
    Lv X, Yang Y, Tao Y, et al. A mechanism study on toxicity of graphene oxide to Daphnia magna:Direct link between bioaccumulation and oxidative stress[J]. Environmental Pollution, 2018, 234:953-959
    Zhu S, Luo F, Chen W, et al. Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina[J]. Science of the Total Environment, 2017, 595:101-109
    Chen M, Yin J, Liang Y, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish[J]. Aquatic Toxicology, 2016, 174:54-60
    Zhang X, Zhou Q, Zou W, et al. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations[J]. Environmental Science & Technology, 2017, 51(14):7861-7871
    Mesaric T, Gambardella C, Milivojevic T, et al. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae[J]. Aquatic Toxicology, 2015, 163:121-129
    Katsumiti A, Tomovska R, Cajaraville M P. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro[J]. Aquatic Toxicology, 2017, 188:138-147
    Li M, Gao Y, Hu X. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms[J]. Environmental Science & Technology, 2016, 50(16):8530-8537
    关淑英,武峰,赵彬. MTT法检测GO的细胞毒性[J].中国现代医生, 2014, 52(17):18-20

    Guan S Y, Wu F, Zhao B. Detection of GO cytotxicity by MTT assay[J]. Chinese Modern Doctor, 2014, 52(17):18-20(in Chinese)

    Zhang X, Yang R, Wang C, et al. Cell biocompatibility of functionalized graphene oxide[J]. Acta Physico-Chimica Sinica, 2012, 28(6):1520-1524
    孙彤,崔欣,侯雨,等.氧化石墨烯的功能化及其生物相容性研究[J].应用化工, 2013, 42(5):806-808

    Sun T, Cui X, Hou Y, et al. The functionaization and biocompatibility of graphene oxide[J]. Applied Chemistry Industry, 2013, 42(5):806-808(in Chinese)

  • 加载中
计量
  • 文章访问数:  2929
  • HTML全文浏览数:  2929
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-28

氧化石墨烯抗菌性及生物安全性研究进展

    作者简介: 宋雅丽(1991-),女,硕士,研究方向为纳米材料的生物安全性,E-mail:2680654714@qq.com
  • 1. 中北大学化学工程与技术学院, 太原 030051;
  • 2. 山西医科大学基础医学院, 太原 030001;
  • 3. 中北大学材料科学与工程学院, 太原 030051;
  • 4. 中北大学环境与安全工程学院, 太原 030051
基金项目:

山西省高等学校科技创新项目(201802075);山西省重点研发计划资助项目(201803D221013-4, 201803D221026-4);山西省自然科学青年基金资助项目(201601D202090);纳米功能复合材料山西省重点实验室开放基金资助项目(NFCM201603)

摘要: 

氧化石墨烯是一种表面有丰富含氧官能团的石墨烯衍生物,具有与石墨烯相似的二维蜂窝状晶格结构,从而导致了其具有电学、光学、力学特性和良好的生物相容性,被广泛应用于材料学、生物医学和药物传递等诸多领域。因氧化石墨烯日益增多的生产和使用,其在空气、水和土壤中大量积累,引发了人们对其生物安全性的高度关注。以微生物、陆生动植物和水生动植物为分类标准,综述了近几年氧化石墨烯对微生物、动物和植物的毒性影响,总结并分析了三者的毒性机理,比较了不同生存环境下其对动植物毒性影响的不同,旨在更加全面地揭示氧化石墨烯的生物安全性,为氧化石墨烯安全使用剂量和其功能化应用提供一定的参考。

English Abstract

参考文献 (63)

目录

/

返回文章
返回