应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险

陈锦灿, 方超, 郑榕辉, 张玉生, 王克坚, 薄军. 应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险[J]. 生态毒理学报, 2020, 15(1): 242-255. doi: 10.7524/AJE.1673-5897.20190601001
引用本文: 陈锦灿, 方超, 郑榕辉, 张玉生, 王克坚, 薄军. 应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险[J]. 生态毒理学报, 2020, 15(1): 242-255. doi: 10.7524/AJE.1673-5897.20190601001
Chen Jincan, Fang Chao, Zheng Ronghui, Zhang Yusheng, Wang Kejian, Bo Jun. Assessing Ecological Risks of Micro(nano)plastics to Aquatic Organisms Using Species Sensitivity Distributions[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 242-255. doi: 10.7524/AJE.1673-5897.20190601001
Citation: Chen Jincan, Fang Chao, Zheng Ronghui, Zhang Yusheng, Wang Kejian, Bo Jun. Assessing Ecological Risks of Micro(nano)plastics to Aquatic Organisms Using Species Sensitivity Distributions[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 242-255. doi: 10.7524/AJE.1673-5897.20190601001

应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险

    作者简介: 陈锦灿(1994-),男,硕士研究生,研究方向为海洋生态毒理学,E-mail:22320181152118@stu.xmu.edu.cn
  • 基金项目:

    国家重点研发计划项目(2019YFD0901101);国家海洋局极地考察办公室极地考察业务化与科研项目;海洋三所基本科研业务费(2018019);全球变化与海气相互作用专项(GASI-02-SCS-YDsum)

  • 中图分类号: X171.5

Assessing Ecological Risks of Micro(nano)plastics to Aquatic Organisms Using Species Sensitivity Distributions

  • Fund Project:
  • 摘要: 水环境中的微(纳米)塑料对水生生物具有潜在的危害。为了评估微(纳米)塑料对水生生物的毒性效应及生态风险,本研究在广泛查阅并分析微(纳米)塑料相关毒理学研究数据的基础上,利用物种敏感性分布(Species Sensitivity Distributions, SSD)方法对其中5门10科11种水生生物的急性毒理数据进行曲线拟合;计算对应的5%危害浓度(the hazardous concentration for 5% of the species, HC5)和潜在影响比例(potential affected fractions, PAF);计算了相应的急性生态效应阀值(predicted no effect concentration, PNECacute),并比较了各类水生生物对微(纳米)塑料的敏感性及其所受生态风险。结果表明,目前已有数据中微(纳米)塑料对费氏弧菌(Vibrio fischeri)的生态风险最大,对朱氏四爿藻(Tetraselmis chuii)的生态风险最小;基于Reweibull模型对水生生物数据所推导的PNECacute为0.185 μg·L-1,约为当前微(纳米)塑料在水体环境中浓度的30%。利用SSD来预测微(纳米)塑料不同暴露浓度下对水生生物的PAF,发现当微(纳米)塑料暴露浓度小于10 μg·L-1时,水生生物所受的影响在可接受范围内;当暴露浓度达到1 000 μg·L-1时,将有26%的物种受到微(纳米)塑料的危害。此外,利用Rurrlioz软件估算了世界典型淡水与海水水域表层水体中微塑料对水生生物的PAF值,发现其PAF预测值都为0;将各水域微塑料浓度与急性生态效应阀值PNECacute比较后发现,除太湖外,其他水体环境中微塑料浓度都低于PNECacute,说明如果只考虑微塑料本身的影响,目前世界典型水域表层水中微塑料对水生生物的危害程度大部分都在可接受的范围之内。
  • 加载中
  • Yan M, Nie H, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou City and Pearl River estuary, China[J]. Chemosphere, 2019, 217:879-886
    Plastics Europe. Plastics-The Facts 2018:An analysis of European plastics production, demand and waste data[R]. Brussels, Belgium:Plastics Europe, 2019
    Chen A. Here's how much plastic enters the ocean each year[EB/OL].(2015-02-12)[2019-06-01]. https://www.sciencemag.org/news/2015/02/here-s-how-much-plastic-enters-ocean-each-year
    Plastics Europe. Plastics-The Facts 2015:An analysis of European plastic production, demand and waste data[R]. Brussels, Belgium:Plastics Europe, 2016
    Auta H S, Emenike C U, Fauziah S H. Distribution and importance of microplastics in the marine environment:A review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102:165-176
    薄军,陈梦云,方超,等.微塑料对海洋生物生态毒理学效应研究进展[J].应用海洋学学报, 2018, 37(4):594-600

    Bo J, Chen M Y, Fang C, et al. Research progress in the ecotoxicological effects of microplastics on marine organisms[J]. Journal of Applied Oceanography, 2018, 37(4):594-600(in Chinese)

    Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838
    李连祯,周倩,尹娜,等.食用蔬菜能吸收和积累微塑料[J].科学通报, 2019, 64(9):928-934

    Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9):928-934(in Chinese)

    段以隽,谷翔宇,陈闻帆,等.个人护理品中的微塑料研究[J].环境与发展, 2019, 31(3):236-238

    Duan Y J, Gu X Y, Chen W F, et al. Microplastics in personal care products[J]. Inner Mongolia Environmental Sciences, 2019, 31(3):236-238(in Chinese)

    李道季.海洋微塑料污染状况及其应对措施建议[J].环境科学研究, 2019, 32(2):197-202

    Li D J. Research advance and countermeasures on marine microplastic pollution[J]. Research of Environmental Sciences, 2019, 32(2):197-202(in Chinese)

    周倩.典型滨海潮滩及近海环境中微塑料污染特征及生态风险[D].北京:中国科学院大学, 2016:1-16 Zhou Q. Occurrences and ecological risks of microplastics in the typical coastal beaches and seas[D]. Beijing:University of Chinese Academy of Sciences, 2016:1

    -16(in Chinese)

    European Commission (EU). Guidance on monitoring of marine litter in European seas. A guidance document within the common implementation strategy for the marine strategy framework directive[R]. Ispra:European Commission, Joint Research Centre, MSFD Technical Subgroup on Marine Litter, 2013
    Shahabaldin R, Junboum P, Mohd F, et al. Microplastics pollution in different aquatic environments and biota:A review of recent studies[J]. Marine Pollution Bulletin, 2018, 133:191-208
    Bergmann M, Gutow L, Klages M, et al. Marine Anthropogenic Litter Ⅱ[M]. Springer International Publishing, 2015:325-340
    陈启晴,杨守业, Henner H,等.微塑料污染的水生生态毒性与载体作用[J].生态毒理学报, 2018, 13(1):16-30

    Chen Q Q, Yang S Y, Henner H, et al. The ecotoxicity and carrier function of microplastics in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(1):16-30(in Chinese)

    Gigault J, Halle A T, Baudrimont M, et al. Current opinion:What is a nanoplastics?[J]. Environmental Pollution, 2018, 235:1030-1034
    Cauwenberghe L V, Deveriese L, Francois G, et al. Microplastics in sediments:A review of techniques, occurrence and effects[J]. Marine Environmental Research, 2005, 111:5-17
    殷岑,魏梦碧,刘会会.微塑料污染现状及对海洋生物影响的研究进展[J].环境监控与预警, 2018, 10(6):5-15

    Yin C, Wei M B, Liu H H. Progress on the microplastics pollution status and its effects on marine organisms[J]. Environmental Monitoring and Forewarning, 2018, 10(6):5-15(in Chinese)

    Kaposi K L, Mos B, Kelaher B P, et al. Ingestion of microplastic has limited impact on a marine larva[J]. Environmental Science & Technology, 2014, 48(3):1638-1645
    Ostiategui-Francia P A, Usategui-Martin L A. Microplastics Presence in Sea Turtles[M]//Gianella L G. Fate & Impact of Microplastics in Marine Ecosystems. ScienceDirect, 2017:34-35
    Au S Y, Bruce T F, Bridges W C, et al. Responses of Hyalella azteca, to acute and chronic microplastic exposures[J]. Environmental Toxicology and Chemistry, 2015, 34(11):2564-2572
    Lithner D, Ildikó N, Dave G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna[J]. Environmental Science and Pollution Research, 2012, 19(5):1763-1772
    Jin Y X, Xia J Z, Pan Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329
    Farrell P, Nelson K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3
    Bergami E, Bocci E, Vannuccini M L, et al. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae[J]. Ecotoxicology and Environmental Safety, 2016, 123:18-25
    Li H X, Getzinger G J, Ferguson P L, et al. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite[J]. Environmental Science & Technology, 2016, 50(2):924-931
    Mazurais D, Ernande B, Quazuguel P, et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae[J]. Marine Environmental Research, 2015, 112:78-85
    Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.)[J]. Environmental Science & Technology, 2008, 42(13):5026-5031
    Yu P, Liu Z, Wu D, et al. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver[J]. Aquatic Toxicology, 2018, 200:28-36
    Kashiwada S. Distribution of nanoparticles in the seethrough Medaka (Oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11):1697-1702
    Devriese L I, De W B, Vethaak A D, et al. Bioaccumulation of PCBs from microplastics in Norway lobster (Nephrops norvegicus):An experimental study[J]. Chemosphere, 2017, 186:10-16
    杨婧婧,徐笠,陆安祥,等.环境中微(纳米)塑料的来源及毒理学研究进展[J].环境化学, 2018, 37(3):383-396

    Yang J J, Xu L, Lu A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese)

    龙邹霞,余兴光,金翔龙,等.海洋微塑料污染研究进展和问题[J].应用海洋学学报, 2017, 36(4):135-145

    Long Z X, Yu X G, Jin X L, et al. Progress in marine microplastics pollution research[J]. Journal of Applied Oceanography, 2017, 36(4):135-145(in Chinese)

    孙晓霞.海洋微塑料生态风险研究进展与展望[J].地球科学进展, 2016, 31(6):560-566

    Sun X X. Progress and prospect on the study of the ecological risk of microplastics in the ocean[J]. Advances in Earth Science, 2016, 31(6):560-566(in Chinese)

    Wright S L, Thompson R C, Galloway T S. The physical impacts of microplastics on marine organisms:A review[J]. Environmental Pollution, 2013, 178:483-492
    Wright S, Rowe D, Thompson R C, et al. Microplastic ingestion decreases energy reserves in marine worms[J]. Current Biology, 2013, 23:1031-1033
    Anbumani S, Kakkar P. Ecotoxicological effects of microplastics on biota:A review[J]. Environmental Science and Pollution Research, 2018, 28(15):14373-14396
    Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
    徐向荣,孙承君,季荣,等.加强海洋微塑料的生态和健康危害研究提升风险管控能力[J].中国科学院院刊, 2018, 33(10):1003-1011

    Xu X R, Sun C J, Ji R, et al. Strengthening ecological and health hazards study of marine microplastics and promoting risk regulatory and control capacities[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(10):1003-1011(in Chinese)

    Aagaard A, Brock T C M, Capri E, et al. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters[S]. EFSA Journal, 2013, 11(7):3290
    United States Environmental Protection Agency (US EPA). PB85-227049 Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[S]. Springfield:National Technical Information Service, 2006
    Carson H S, Nerheim M S, Carroll K A, et al. The plastic-associated microorganisms of the North Pacific Gyre[J]. Marine Pollution Bulletin, 2013, 75(1-2):126-132
    Mu J L, Zhang S F, Ling Q, et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea[J]. Marine Pollution Bulletin, 2019, 143:58-65
    胡习邦,曾东,王俊能,等.应用物种敏感性分布评估苯胺的水生生态风险[J].生态环境学报, 2016, 25(3):471-476

    Hu X B, Zeng D, Wang J N, et al. Assessing aquatic ecological risk of aniline by species sensitivity distributions[J]. Ecology and Environmental Sciences, 2016, 25(3):471-476(in Chinese)

    孔祥臻,何伟,秦宁,等.重金属对淡水生物生态风险的物种敏感性分布评估[J].中国环境科学, 2011, 31(9):1555-1562

    Kong X Z, He W, Qin N, et al. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions[J]. China Environmental Science, 2011, 31(9):1555-1562(in Chinese)

    United States Environmental Protection Agency (US EPA). EPA/630/R-95/002F Guidelines for ecological risk assessment[S]. Washington D C:Risk Assessment Forum, 1998
    陈慰双.我国水环境中壬基酚的污染现状及生态风险评估[D].青岛:中国海洋大学, 2013:10-12 Chen W S. Thecurrent pollution status and ecological risk assessment of nonyphenol in domestic water environment[D]. Qingdao:Ocean University of China, 2013:10

    -12(in Chinese)

    章海波,周倩,周阳,等.重视海岸及海洋微塑料污染加强防治科技监管研究工作[J].中国科学院院刊, 2016, 31(10):1182-1189

    Zhang H B, Zhou Q, Zhou Y, et al. Raising concern about microplastic pollution in coastal and marine environment and strengthening scientific researches on pollution prevention and management[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(10):1182-1189(in Chinese)

    Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics:Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344:179-199
    Lithner D, LarssonÅ, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18):3309-3324
    Gert E, Lisbeth V C, Maarten D R, et al. Risk assessment of microplastics in the ocean:Modelling approach and first conclusions[J]. Environmental Pollution, 2018, 242:1930-1938
    Rochman C M, Hoh E, Kurobe T, et al. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress[J]. Scientific Reports, 2013, 3:3263
    王印,王军军,秦宁,等.应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险[J].环境科学学报, 2009, 29(11):2407-2414

    Wang Y, Wang J J, Qin N, et al. Assessing ecological risks of DDT and lindane to freshwater organisms by species sensitivity distributions[J]. Acta Scientiae Circumstantiae, 2009, 29(11):2407-2414(in Chinese)

    Kooijman S A L M. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987, 21(3):269-276
    Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45:192-202
    van den Brink P J, Brock T C M, Posthuma L. The Value of the Species Sensitivity Distribution Concept for Predicting Field Effects:(Non-) Confirmation of the Concept Using Semifield Experiments[M]//Posthuma L, Suter G W. Environmental and ecological risk assessment. Boca Raton:Lewis Publishers, 2002:155-193
    杜建国,赵佳懿,陈彬,等.应用物种敏感性分布评估中国近海和福建主要海湾水体重金属生态风险[J].生态毒理学报, 2013, 8(4):554-560

    Du J G, Zhao J Y, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms in Chinese offshore and Fujian's main bays by species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2013, 8(4):554-560(in Chinese)

    Jensen J, Smith S R, Krogh P H, et al. European risk assessment of LAS in agricultural soil revisited:Species sensitivity distribution and risk estimates[J]. Chemosphere, 2007, 69(6):880-892
    Raimondo S, Vivian D N, Delos C, et al. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment[J]. Environmental Toxicology & Chemistry, 2008, 27(12):2599-2607
    蒋丹烈,胡霞林,尹大强.应用物种敏感性分布法对太湖沉积物中多环芳烃的生态风险分析[J].生态毒理学报, 2011, 6(1):60-66

    Jiang D L, Hu X L, Yin D Q. Ecological risk assessment on polycyclic aromatic hydrocarbons of sediment in Taihu Lake using species sensitivity distributions[J]. Asian Journals of Ecotoxicology, 2011, 6(1):60-66(in Chinese)

    周欣欣,曲甍甍,陈朗,等.物种敏感度分布(SSD)方法在农药环境风险评估中的应用[J].农药, 2017, 56(11):786-790

    Zhou X X, Qu M M, Chen L, et al. The application of species sensitivity distribution (SSD) method in environmental risk assessment of pesticide[J]. Agrochemicals, 2017, 56(11):786-790(in Chinese)

    湛忠宇,车娅丽,龚李莉,等.水生态风险评估方法研究[C].广州:第七届全国河湖治理与水生态文明发展论坛, 2015
    Australia's Commonwealth Scientific and Industrial-Research Organization (CSIRO). A flexible approach to species protection[EB/OL].[2019-06-01]. https://research.csiro.au/software/burrlioz/.2008
    Ziajahromi S, Kumar A, Neale P A, et al. Impact of microplastic beads and fibers on water flea (Ceriodaphnia dubia) survival, growth, and reproduction:Implications of single and mixture exposures[J]. Environmental Science & Technology, 2017, 51(22):13397-13406
    Luis L G, Ferreira P, Fonte E, et al. Does the presence of microplastics influence the acute toxicity of chromium (Ⅵ) to early juveniles of the common goby (Pomatoschistus microps)?A study with juveniles from two wild estuarine populations[J]. Aquatic Toxicology, 2015, 164:163-174
    Della T C, Bergami E, Salvati A, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus[J]. Environmental Science & Technology, 2014, 48(20):12302-12311
    Lee K W, Shim W J, Kwon O Y, et al. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicas[J]. Environmental Science & Technology, 2013, 47(19):11278-11283
    Davarpanah E, Guilhermino L. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii[J]. Estuarine Coastal & Shelf Science, 2015, 167:269-275
    Casado M P, Macken A, Byrne H J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery[J]. Environmental International, 2013, 51:97-105
    杜建国,赵佳懿,陈彬,等.应用物种敏感性分布评估重金属对海洋生物的生态风险[J].生态毒理学报, 2013, 8(4):561-570

    Du J G, Zhao J Y, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms by species distributions[J]. Asian Journal of Ecotoxicology, 2013, 8(4):561-570(in Chinese)

    Ellen B, Paula R H, Edwin M, et al. Quantifying ecological risks of aquatic micro-and nanoplastic[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(1):32-80
    穆景利,王莹,张志锋,等.我国近海镉的水质基准及生态风险研究[J].海洋学报, 2013, 35(3):137-146

    Mu J L, Wang Y, Zhang Z F, et al. Marine water quality criteria for cadmium with a view to protecting aquatic life in China and ecological risk assessment[J]. Acta Oceanologica Sinica, 2013, 35(3):137-146(in Chinese)

    European Commission. Technical Guidance Documents in Support of the Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and the Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances (Part Ⅱ)[R]. Ispra:European Commission, 1996
    穆景利,王菊英,洪鸣,等.海水水质基准的研究方法与我国海水水质基准的构建[J].生态毒理学报, 2010, 5(6):761-768

    Mu J L, Wang J Y, Hong M, et al. Methods of deriving marine water quality criterion and proposal for establishment of national marine water quality criterion in China[J]. Asian Journal of Ecotoxicology, 2010, 5(6):761-768(in Chinese)

    Lusher A L, Tirelli V, O'Connor I, et al. Microplastic in Arctic polar waters:The first reported values of particles in surface and sub-surface samples[J]. Scientific Reports, 2015, 5:14947
    Burns E E, Boxall B A A. Microplastics in the aquatic environment:Evidence for or against adverse impacts and major knowledge gaps[J]. Environmental Toxicology and Chemistry, 2018, 37(11):2776-2796
    刘涛,孙晓霞,朱明亮,等.东海表层海水中微塑料分布与组成[J].海洋与湖沼, 2018, 49(1):62-69

    Liu T, Sun X X, Zhu M L, et al. Distribution and composition of microplastics in the surface waters of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(1):62-69(in Chinese)

    Goldstein M C, Rosenberg M, Cheng L, et al. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect[J]. Biology Letters, 2012, 8(5):817-820
    Cózar A, Martí E, Duarte C M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation[J]. Science Advances, 2017, 3(4):e1600582
    Moore C J, Moore S L, Weisberg S B, et al. A comparison of neustonic plastic and zooplankton abundance in southern California's coastal waters[J]. Marine Pollution Bulletin, 2002, 44:1035-1038
    Kang J H, Kwon O Y, Lee K W, et al. Marine neustonic microplastics around the southeastern coast of Korea[J]. Marine Pollution Bulletin, 2015, 96:304-312
    Yamashita R, Tanimura A. Floating plastic in the Kuroshio Current area, western North Pacific Ocean[J]. Marine Pollution Bulletin, 2007, 54(4):485-488
    Zhang W, Zhang S, Wang J, et al. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 2017, 231:541-548
    Deanna R, Mona W. Characterization of microplastics in the surface waters of Kingston Harbour[J]. Science of the Total Environment, 2019, 664:753-760
    Fisher E K, Paglialonga L, Czech E M, et al. Microplastic pollution in lakes and lake shoreline sediments-A case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213:648-657
    Su L, Xue Y, Li L, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216:711-719
    Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249:91-98
    Moore C J, Lattin G L, Zellers A F, et al. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California[J]. Revista de Gestão Costeira Integrada, 2012, 11(1):65-73
    Ding L, Mao R F, Guo X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China[J]. Science of the Total Environment, 2019, 667:427-434
    沙婧婧,戴媛媛,潘玉龙,等.轮虫在生态毒理学中的研究进展[J].生态毒理学报, 2018, 13(3):56-70

    Sha J J, Dai Y Y, Pan Y L, et al. Research progress in using rotifers in ecotoxicological studies[J]. Asian Journal of Ecotoxicology, 2018, 13(3):56-70(in Chinese)

    Hose G C, van den Brink P J. Confirming the species sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data[J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4):511-520
    European Commission. Technical guidance document on risk assessment in support of commission Directive 93/67/EEC on risk assessment for new notified substances. No. 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market (Parts II)[S]. Ispra:European Commission, 2003
    陈梦云.聚苯乙烯微塑料暴露对黑点青鳉毒性效应研究与机制探讨[D].厦门:国家海洋局第三海洋研究所, 2018:8-9 Chen M Y. Study on toxic effects and mechanisms of polystyrene microplastics on Oryzias melastigma[D]. Xiamen:Third Institute of Oceanography, State Oceanic Administration, 2018:8

    -9(in Chinese)

    王素春,刘光洲,张欢,等.微塑料对微藻的毒性效应研究进展[J].海洋环境科学, 2019, 38(2):192-197

    Wang S C, Liu G Z, Zhang H, et al. Toxicity research progress of microplastics on microalgae[J]. Marine Environmental Science, 2019, 38(2):192-197(in Chinese)

    Jeong C B, Won E J, Kang H M, et al. Microplastic sizedependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857
    Jeong C B, Kang H M, Lee M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323
    Rochman C M, Kurobe T, Flores I, et al. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 2014, 493:656-661
    Greven A C, Merk T, Karagöz F, et al. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2016, 35(12):3093-3100
    Karami A, Romano N, Galloway T, et al. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus)[J]. Environmental Research, 2016, 151:58-70
    Völker C, Gräf T, Schneider I, et al. Combined effects of silver nanoparticles and 17α-ethinylestradiol on the freshwater mudsnail Potamopyrgus antipodarum[J]. Environmental Science and Pollution Research, 2014, 21(18):10661-10670
    Galloway T S, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem[J]. Nature Ecology & Evolution, 2017, 1(5):116
    Andrady A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605
    Berber A A, Yurtsever M, Berber N, et al. DNA Damage Evaluation of Polyethylene Microspheres in Daphnia magna[M]//Gianella L G. Fate & Impact of Microplastics in Marine Ecosystems. ScienceDirect, 2017:106
    Wang J, Liu X H, Liu G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene[J]. Ecotoxicology and Environmental Safety, 2019, 173:331-338
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Sun X, Li Q, Zhu M, et al. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea[J]. Marine Pollution Bulletin, 2017, 115(1-2):217-224
    Rios L M, Moore C, Jones P R. Persistent organic pollutants carried by synthetic polymers in the ocean environment[J]. Marine Pollution Bulletin, 2007, 54(8):1230-1237
    Avio C G, Gorbi S, Milan M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels[J]. Environmental Pollution, 2015, 198:211-222
    Koelmans A A, Besseling E, Foekema E, et al. Risks of plastic debris:Unravelling fact, opinion, perception, and belief[J]. Environmental Science & Technology, 2017, 51(20):11513-11519
    Lenz R, Enders K, Nielsen T G, et al. Microplastics exposure studies should be environmentally realistic[J]. Proceeding of National Academy of Sciences, 2016, 113(29):4121-4122
    Kooi M, Besseling E, Kroeze C, et al. Modelling the Fate and Transport of Plastic Debris in Freshwaters:Review and Guidance[M]//Wagner M, Lamber S. Eds. Freshwater Microplastics. Emerging Environmental Contaminants?. Cham:Springer:125-152
  • 加载中
计量
  • 文章访问数:  4904
  • HTML全文浏览数:  4904
  • PDF下载数:  164
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-01

应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险

    作者简介: 陈锦灿(1994-),男,硕士研究生,研究方向为海洋生态毒理学,E-mail:22320181152118@stu.xmu.edu.cn
  • 1. 近海海洋环境科学国家重点实验室, 厦门大学海洋与地球学院, 厦门 361102;
  • 2. 海洋生物与生态实验室, 自然资源部第三海洋研究所, 厦门 361005
基金项目:

国家重点研发计划项目(2019YFD0901101);国家海洋局极地考察办公室极地考察业务化与科研项目;海洋三所基本科研业务费(2018019);全球变化与海气相互作用专项(GASI-02-SCS-YDsum)

摘要: 水环境中的微(纳米)塑料对水生生物具有潜在的危害。为了评估微(纳米)塑料对水生生物的毒性效应及生态风险,本研究在广泛查阅并分析微(纳米)塑料相关毒理学研究数据的基础上,利用物种敏感性分布(Species Sensitivity Distributions, SSD)方法对其中5门10科11种水生生物的急性毒理数据进行曲线拟合;计算对应的5%危害浓度(the hazardous concentration for 5% of the species, HC5)和潜在影响比例(potential affected fractions, PAF);计算了相应的急性生态效应阀值(predicted no effect concentration, PNECacute),并比较了各类水生生物对微(纳米)塑料的敏感性及其所受生态风险。结果表明,目前已有数据中微(纳米)塑料对费氏弧菌(Vibrio fischeri)的生态风险最大,对朱氏四爿藻(Tetraselmis chuii)的生态风险最小;基于Reweibull模型对水生生物数据所推导的PNECacute为0.185 μg·L-1,约为当前微(纳米)塑料在水体环境中浓度的30%。利用SSD来预测微(纳米)塑料不同暴露浓度下对水生生物的PAF,发现当微(纳米)塑料暴露浓度小于10 μg·L-1时,水生生物所受的影响在可接受范围内;当暴露浓度达到1 000 μg·L-1时,将有26%的物种受到微(纳米)塑料的危害。此外,利用Rurrlioz软件估算了世界典型淡水与海水水域表层水体中微塑料对水生生物的PAF值,发现其PAF预测值都为0;将各水域微塑料浓度与急性生态效应阀值PNECacute比较后发现,除太湖外,其他水体环境中微塑料浓度都低于PNECacute,说明如果只考虑微塑料本身的影响,目前世界典型水域表层水中微塑料对水生生物的危害程度大部分都在可接受的范围之内。

English Abstract

参考文献 (111)

目录

/

返回文章
返回