新烟碱类杀虫剂对非靶标生物毒性效应的研究进展

张琪, 赵成, 卢晓霞, 于波, 黄钰婷. 新烟碱类杀虫剂对非靶标生物毒性效应的研究进展[J]. 生态毒理学报, 2020, 15(1): 56-71. doi: 10.7524/AJE.1673-5897.20190328001
引用本文: 张琪, 赵成, 卢晓霞, 于波, 黄钰婷. 新烟碱类杀虫剂对非靶标生物毒性效应的研究进展[J]. 生态毒理学报, 2020, 15(1): 56-71. doi: 10.7524/AJE.1673-5897.20190328001
Zhang Qi, Zhao Cheng, Lu Xiaoxia, Yu Bo, Huang Yuting. Advances in Research on Toxic Effects of Neonicotinoid Insecticides on Non-target Organisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 56-71. doi: 10.7524/AJE.1673-5897.20190328001
Citation: Zhang Qi, Zhao Cheng, Lu Xiaoxia, Yu Bo, Huang Yuting. Advances in Research on Toxic Effects of Neonicotinoid Insecticides on Non-target Organisms[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 56-71. doi: 10.7524/AJE.1673-5897.20190328001

新烟碱类杀虫剂对非靶标生物毒性效应的研究进展

    作者简介: 张琪(1994-),女,硕士研究生,研究方向为生态毒理学,E-mail:zhangqi-715@pku.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41771528, 2018YFC1803302);环境化学与生态毒理学国家重点实验室开放基金资助项目(KF2016-15)

  • 中图分类号: X171.5

Advances in Research on Toxic Effects of Neonicotinoid Insecticides on Non-target Organisms

  • Fund Project:
  • 摘要: 新烟碱类杀虫剂是目前全球市场占有率最高的一类杀虫剂,它们选择性作用于昆虫烟碱型乙酰胆碱受体,以往普遍认为其对非靶标生物毒性较低。然而,越来越多的证据表明,新烟碱类杀虫剂的暴露会对非靶标生物造成负面影响。本文综述了新烟碱类杀虫剂对水生生物、非靶标昆虫、鸟类和哺乳动物等多种非靶标生物的毒性,以及对人类健康的影响。新烟碱类杀虫剂对各类生物均具有急性致死毒性,但不同物种之间半数致死浓度(LC50)或半数致死剂量(LD50)差别较大,由低至高依次为昆虫(0.01~2.38 mg·L-1,3.7~81 ng bee-1)、甲壳动物(0.59~37.75 mg·L-1)、鱼类(1.2~241 mg·L-1)、鸟类(15~>2 000 mg kg-1)和哺乳动物(82~>5 000 mg kg-1)。新烟碱类杀虫剂对非靶标生物的亚致死毒性表现在降低繁殖力和生长速度、降低活动性、影响神经系统、扰乱代谢平衡、损伤DNA等。总体上看,吡虫啉的毒性最高,呋虫胺和烯啶虫胺的毒性较低。啶虫脒、噻虫啉、噻虫嗪和噻虫胺的毒性大小顺序随物种不同而不同。对于水生生物和非靶标昆虫,噻虫啉和噻虫胺的毒性较高,而对于鸟类和哺乳动物,啶虫脒的毒性较高。最后针对现有研究的不足,提出了今后的研究方向,以期为该类杀虫剂的风险评估和合理施用提供科学依据。
  • 加载中
  • 严明,柏亚罗.双酰胺类等五大类热点农药的市场概况及产品研发[J].现代农药, 2019, 18(1):7-15

    Yan M, Bai Y L. Market overview and product R & D on five hot pesticide sectors including diamide class[J]. Modern Agrochemicals, 2019, 18(1):7-15(in Chinese)

    Hladik M L, Main A R, Goulson D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6):3329-3335
    Jeschke P, Nauen R, Schindler M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7):2897-2908
    Matsuda K, Shimomura M, Ihara M, et al. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:Electrophysiology, molecular biology, and receptor modeling studies[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(8):1442-1452
    Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil):Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1):5-34
    Goulson D, Kleijn D. Review:An overview of the environmental risks posed by neonicotinoid insecticides[J]. Journal of Applied Ecology, 2013, 50(4):977-987
    Wood T J, Goulson D. The environmental risks of neonicotinoid pesticides:A review of the evidence post 2013[J]. Environmental Science and Pollution Research, 2017, 24(21):17285-17325
    Zhou Y, Lu X, Fu X, et al. Development of a fast and sensitive method for measuring multiple neonicotinoid insecticide residues in soil and the application in parks and residential areas[J]. Analytica Chimica Acta, 2018, 1016:19-28
    Morrissey C A, Mineau P, Devries J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates:A review[J]. Environment International, 2015, 74:291-303
    Hladik M L, Kolpin D W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA[J]. Environmental Chemistry, 2016, 13(1):12-20
    Zhang C, Tian D, Yi X, et al. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019, 217:437-446
    Craddock H A, Huang D, Turner P C, et al. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015[J]. Environmental Health, 2019, 18(1):7
    Lu C, Chang C H, Palmer C, et al. Neonicotinoid residues in fruits and vegetables:An integrated dietary exposure assessment approach[J]. Environmental Science & Technology, 2018, 52(5):3175-3184
    Finnegan M C, Baxter L R, Maul J D, et al. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish[J]. Environmental Toxicology and Chemistry, 2017, 36(10):2838-2848
    Gibbons D, Morrissey C, Mineau P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife[J]. Environmental Science and Pollution Research International, 2015, 22(1):103-118
    Agatz A, Ashauer R, Brown C D. Imidacloprid perturbs feeding of Gammarus pulex at environmentally relevant concentrations[J]. Environmental Toxicology and Chemistry, 2014, 33(3):648-653
    Bownik A, Pawłocik M, Sokołowska N. Effects of neonicotinoid insecticide acetamiprid on swimming velocity, heart rate and thoracic limb movement of Daphnia magna[J]. Polish Journal of Natural Sciences, 2017, 32:481-493
    Vehovszky A, Farkas A, Acs A, et al. Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system[J]. Aquatic Toxicology, 2015, 167:172-179
    Yan S H, Wang J H, Zhu L S, et al. Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio rerio) livers[J]. Environmental Toxicology, 2016, 31(12):2006-2015
    Ge W, Yan S, Wang J, et al. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(6):1856-1862
    Yan S, Wang J, Zhu L, et al. Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers[J]. Ecotoxicology and Environmental Safety, 2015, 122:54-60
    Topal A, Alak G, Ozkaraca M, et al. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide:Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity[J]. Chemosphere, 2017, 175:186-191
    Tian X, Yang W, Wang D, et al. Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram[J]. Chemosphere, 2018, 210:1006-1012
    Ma X, Li H, Xiong J, et al. Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2429-2436
    Alam A, Tabinda A, Mahmood-Ul-Hassan, et al. Comparative toxicity of acetamiprid and Azadirachta indica leave extract on biochemical components of blood of Labeo rohita[J]. Pakistan Journal of Zoology, 2014, 46(6):1515-1520
    Zhang H, Zhao L J. Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio)[J]. Aquatic Toxicology, 2017, 191:85-94
    Bonmatin J M, Moineau I, Charvet R, et al. Behaviour of Imidacloprid in Fields. Toxicity for Honey Bees[M]//Lichtfouse É, Schwarzbauer J, Robert D. Environmental Chemistry. Green Chemistry and Pollutants in Ecosystems. Springer, 2005:483-494
    European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid[J]. EFSA Journal, 2013, 11(1):3060
    European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam[J]. EFSA Journal, 2014, 12(6):3736
    European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin[J]. EFSA Journal, 2013, 11(1):3066
    Whitehorn P R, O'connor S, Wackers F L, et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production[J]. Science, 2012, 336(6079):351-352
    Abbott V, Nadeau J, Higo H, et al. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera:Megachilidae)[J]. Journal of Economic Entomology, 2008, 101(3):784-796
    史晶亮,杨乐,廖春华,等.新烟碱类杀虫剂对蜜蜂毒理作用的研究进展[J].农药, 2019, 58(1):6-10

    Shi J L, Yang L, Liao C H, et al. Research progress on the toxicological effects of neonicotinoid insecticides on honeybees[J]. Pesticides, 2019, 58(1):6-10(in Chinese)

    Lambin M, Armengaud C, Raymond S, et al. Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee[J]. Archives of Insect Biochemistry and Physiology, 2001, 48(3):129-134
    Decourtye A, Devillers J, Cluzeau S, et al. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions[J]. Ecotoxicology and Environmental Safety, 2004, 57(3):410-419
    Aliouane Y, El Hassani A K, Gary V, et al. Subchronic exposure of honeybees to sublethal doses of pesticides:Effects on behavior[J]. Environmental Toxicology and Chemistry, 2009, 28(1):113-122
    Di Prisco G, Cavaliere V, Annoscia D, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46):18466-18471
    Beadle K, Singh K S, Troczka B J, et al. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis[J]. PLoS Genetics, 2019, 15(2):e1007903
    Henry M, Beguin M, Requier F, et al. A common pesticide decreases foraging success and survival in honey bees[J]. Science, 2012, 336(6079):348-350
    Woodcock B, Bullock J, Shore R, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees[J]. Science, 2017, 356(6345):1393-1395
    余露.法国成欧盟首个禁止销售使用五种新烟碱杀虫剂的国家[J].农药市场信息, 2018, 24:45
    Yu R X, Wang Y H, Hu X Q, et al. Individual and joint acute toxicities of selected insecticides against Bombyx mori (Lepidoptera:Bombycidae)[J]. Journal of Economic Entomology, 2016, 109(1):327-333
    Phugare S S, Jadhav J P. Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori)[J]. CLEAN-Soil, Air, Water, 2015, 43(2):296-304
    Phugare S S, Kalyani D C, Gaikwad Y B, et al. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori)[J]. Chemical Engineering Journal, 2013, 230:27-35
    Pecenka J R, Lundgren J G. Non-target effects of clothianidin on monarch butterflies[J]. The Science of Nature, 2015, 102(3-4):19
    Gilburn A S, Bunnefeld N, Wilson J M, et al. Are neonicotinoid insecticides driving declines of widespread butterflies?[J]. Peer J, 2015, 3:e1402
    Forister M L, Cousens B, Harrison J G, et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California[J]. Biology Letters, 2016, 12(8):20160475
    Tomizawa M, Casida J E. Neonicotinoid insecticide toxicology:Mechanisms of selective action[J]. Annual Review of Pharmacology and Toxicology, 2005, 45:247-268
    Hallmann C A, Foppen R P, van Turnhout C A, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014, 511(7509):341-343
    Millot F, Decors A, Mastain O, et al. Field evidence of bird poisonings by imidacloprid-treated seeds:A review of incidents reported by the French SAGIR network from 1995 to 2014[J]. Environmental Science and Pollution Research International, 2017, 24(6):5469-5485
    Mineau P, Palmer C. The Impact of the Nation's Most Widely Used Insecticides on Birds[M]//American Bird Conservancy. 2013:18-200
    Addy-Orduna L M, Brodeur J C, Mateo R. Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves:A contribution for the risk assessment of neonicotinoids in birds[J]. Science of the Total Environment, 2019, 650(Pt 1):1216-1223
    Tokumoto J, Danjo M, Kobayashi Y, et al. Effects of exposure to clothianidin on the reproductive system of male quails[J]. Journal of Veterinary Medical Science, 2013, 75(6):755-760
    Lopez-Antia A, Ortiz-Santaliestra M E, Mougeot F, et al. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole[J]. Ecotoxicology, 2013, 22(1):125-138
    Lopez-Antia A, Ortiz-Santaliestra M E, Mougeot F, et al. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity[J]. Environmental Research, 2015, 136:97-107
    Gobeli A, Crossley Ⅱ D, Johnson J, et al. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 195:9-15
    Pandey S P, Mohanty B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird[J]. Chemosphere, 2015, 122:227-234
    Hoshi N, Hirano T, Omotehara T, et al. Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides[J]. Biological and Pharmaceutical Bulletin, 2014, 37(9):1439-1443
    Rodrigues K J, Santana M B, Do Nascimento J L, et al. Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats[J]. Ecotoxicology and Environmental Safety, 2010, 73(1):101-107
    Sheetsa L P, Lib A A, Minnemac D J, et al. A critical review of neonicotinoid insecticides for developmental neurotoxicity[J]. Critical Reviews in Toxicology, 2016, 46(2):153-190
    Bal R, Naziroglu M, Turk G, et al. Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats[J]. Cell Biochemistry and Function, 2012, 30(6):492-499
    Bal R, Türk G, Tuzcu M, et al. Effects of the neonicotinoid insecticide, clothianidin, on the reproductive organ system in adult male rats[J]. Drug and Chemical Toxicology, 2013, 36(4):421-429
    Bal R, Türk G, Tuzcu M, et al. Assessment of imidacloprid toxicity on reproductive organ system of adult male rats[J]. Journal of Environmental Science and Health, Part B, 2012, 47(5):434-444
    Bal R, Türk G, Yılmaz Ö, et al. Effects of clothianidin exposure on sperm quality, testicular apoptosis and fatty acid composition in developing male rats[J]. Cell Biology and Toxicology, 2012, 28(3):187-200
    Zhang J J, Wang Y, Xiang H Y, et al. Oxidative stress:Role in acetamiprid-induced impairment of the male mice reproductive system[J]. Agricultural Sciences in China, 2011, 10(5):786-796
    Kapoor U, Srivastava M K, Srivastava L P. Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats[J]. Food and Chemical Toxicology, 2011, 49(12):3086-3089
    Memon S A, Memon N, Mal B, et al. Histopathological changes in the gonads of male rabbits (Oryctolagus cuniculus) on exposure to imidacloprid insecticide[J]. Journal of Entomology and Zoology Studies, 2014, 2:159-163
    Babel'ová J, Šefčíková Z, Č ikoš Š, et al. Exposure to neonicotinoid insecticides induces embryotoxicity in mice and rabbits[J]. Toxicology, 2017, 392:71-80
    Abou-Donia M B, Goldstein L B, Bullman S, et al. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure[J]. Journal of Toxicology and Environmental Health, Part A, 2008, 71(2):119-130
    Lonare M, Kumar M, Raut S, et al. Evaluation of imidacloprid-induced neurotoxicity in male rats:A protective effect of curcumin[J]. Neurochemistry International, 2014, 78:122-129
    Bhardwaj S, Srivastava M K, Kapoor U, et al. A 90 days oral toxicity of imidacloprid in female rats:Morphological, biochemical and histopathological evaluations[J]. Food and Chemical Toxicology, 2010, 48(5):1185-1190
    de Oliveira I M, Nunes B V, Barbosa D R, et al. Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum[J]. Toxicology Letters, 2010, 192(3):294-297
    Faro L R, Oliveira I M, Duran R, et al. In vivo neurochemical characterization of clothianidin induced striatal dopamine release[J]. Toxicology, 2012, 302(2-3):197-202
    Sano K, Isobe T, Yang J, et al. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice[J]. Frontiers in Neuroscience, 2016, 10:228
    Bal R, Erdogan S, Theophilidis G, et al. Assessing the effects of the neonicotinoid insecticide imidacloprid in the cholinergic synapses of the stellate cells of the mouse cochlear nucleus using whole-cell patch-clamp recording[J]. Neurotoxicology, 2010, 31(1):113-120
    陈柯.吡虫啉对小鼠神经细胞的毒性研究[D].武汉:中国地质大学, 2012:36-90 Chen K. Toxicity and toxic effect of imidacloprid on mouse neuron cells[D]. Wuhan:China University of Geosciences, 2012:36

    -90(in Chinese)

    Kimura-Kuroda J, Komuta Y, Kuroda Y, et al. Nicotinelike effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats[J]. PLoS One, 2012, 7(2):e32432
    Kimura-Kuroda J, Nishito Y, Yanagisawa H, et al. Neonicotinoid insecticides alter the gene expression profile of neuron-enriched cultures from neonatal rat cerebellum[J]. International Journal of Environmental Research and Public Health, 2016, 13(10):987
    Li P, Ann J, Akk G. Activation and modulation of human alpha4beta2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid[J]. Journal of Neuroscience Research, 2011, 89(8):1295-1301
    郭婧怡,高宇,田英.吡虫啉暴露及其遗传毒性研究进展[J].环境与职业医学, 2017, 34(11):1013-1018

    Guo J Y, Gao Y, Tian Y. Research progress on imidacloprid exposure and genotoxity[J]. Journal of Environmental and Occupational Medicine, 2017, 34(11):1013-1018(in Chinese)

    Şekeroğ lu V, Şekeroğ lu Z A, Kefelioğ lu H. Cytogenetic effects of commercial formulations of deltamethrin and/or thiacloprid on Wistar rat bone marrow cells[J]. Environmental Toxicology, 2013, 28(9):524-531
    Kocaman A Y, Rencüzoğ ulları E, Topaktaş M. In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes[J]. Environmental Toxicology, 2014, 29(6):631-641
    Galdíková M, Šiviková K, Holeč ková B, et al. The effect of thiacloprid formulation on DNA/chromosome damage and changes in GST activity in bovine peripheral lymphocytes[J]. Journal of Environmental Science and Health, Part B, 2015, 50(10):698-707
    Bagri P, Jain S K. Assessment of acetamiprid-induced genotoxic effects in bone marrow cells of Swiss albino male mice[J]. Drug and Chemical Toxicology, 2019, 42(2):357-363
    Calderón-Segura M E, Marcial Rojas J A, Mézquita Brito M G, et al. Genotoxicity of the Neonicotinoid Insecticide Poncho (Clothianidin) on CD1 Mice Based on Alkaline Comet and Micronucleus Assays[M]//Larramendy M L, Soloneski S. Toxicity and Hazard of Agrochemicals. InTech Publisher, 2015:113-125
    Calderón-Segura M E, Gomez-Arroyo S, Villalobos-Pietrini R, et al. Evaluation of genotoxic and cytotoxic effects in human peripheral blood lymphocytes exposed in vitro to neonicotinoid insecticides news[J]. Journal of Toxicology, 2012(4):612647
    Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity:An overview[J]. Chemosphere, 2018, 192:59-65
    Kapoor U, Srivastava M K, Trivedi P, et al. Disposition and acute toxicity of imidacloprid in female rats after single exposure[J]. Food and Chemical Toxicology, 2014, 68:190-195
    Toor H K, Sangha G K, Khera K S. Imidacloprid induced histological and biochemical alterations in liver of female albino rats[J]. Pesticide Biochemistry and Physiology, 2013, 105(1):1-4
    Vohra P, Khera K S, Sangha G K. Physiological, biochemical and histological alterations induced by administration of imidacloprid in female albino rats[J]. Pesticide Biochemistry and Physiology, 2014, 110:50-56
    Arfat Y, Mahmood N, Tahir M U, et al. Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice[J]. Toxicology Reports, 2014, 1:554-561
    El Okle O S, El Euony O I, Khafaga A F, et al. Thiamethoxam induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of oxidative stress, inflammation, and anti-apoptotic pathway[J]. Environmental Science and Pollution Research, 2018, 25(5):4678-4689
    Yardimci M, Sevgiler Y, Rencuzogullari E, et al. Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I:Oxidative and neurotoxic potentials[J].Archives of Industrial Hygiene and Toxicology, 2014, 65(4):387-398
    Ozsahin A D, Bal R, Yılmaz O. Biochemical alterations in kidneys of infant and adult male rats due to exposure to the neonicotinoid insecticides imidacloprid and clothianidin[J]. Toxicology Research, 2014, 3(5):324-330
    Cimino A M, Boyles A L, Thayer K A, et al. Effects of neonicotinoid pesticide exposure on human health:A systematic review[J]. Environmental Health Perspectives, 2017, 125(2):155-162
    Elfman L, Hogstedt C, Engvall K, et al. Acute health effects on planters of conifer seedlings treated with insecticides[J]. Annals of Occupational Hygiene, 2009, 53(4):383-390
    Phua D H, Lin C C, Wu M L, et al. Neonicotinoid insecticides:An emerging cause of acute pesticide poisoning[J]. Clinical Toxicology, 2009, 47(4):336-341
    Forrester M. Neonicotinoid insecticide exposures reported to six poison centers in Texas[J]. Human & Experimental Toxicology, 2014, 33(6):568-573
    Mohamed F, Gawarammana I, Robertson T A, et al. Acute human self-poisoning with imidacloprid compound:A neonicotinoid insecticide[J]. PLoS One, 2009, 4(4):e5127
    Carmichael S L, Yang W, Roberts E, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California[J]. Environmental Research, 2014, 135:133-138
    Yang W, Carmichael S L, Roberts E M, et al. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California[J]. American Journal of Epidemiology, 2014, 179:740-748
    Keil A P, Daniels J L, Hertz-Picciotto I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification:The CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study[J]. Environmental Health, 2014, 13:3
    Koureas M, Tsezou A, Tsakalof A, et al. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure[J]. Science of the Total Environment, 2014, 496:358-364
    Hernandez A F, Casado I, Pena G, et al. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects[J]. Inhalation Toxicology, 2008, 20:839-849
    Marfo J T, Fujioka K, Ikenaka Y, et al. Relationship between urinary N-desmethyl-acetamiprid and typical symptoms including neurological findings:A prevalence casecontrol study[J]. PloS One, 2015, 10(11):e0142172
  • 加载中
计量
  • 文章访问数:  4894
  • HTML全文浏览数:  4894
  • PDF下载数:  251
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-28

新烟碱类杀虫剂对非靶标生物毒性效应的研究进展

    作者简介: 张琪(1994-),女,硕士研究生,研究方向为生态毒理学,E-mail:zhangqi-715@pku.edu.cn
  • 地表过程分析与模拟教育部重点实验室, 北京大学城市与环境学院, 北京100871
基金项目:

国家自然科学基金资助项目(41771528, 2018YFC1803302);环境化学与生态毒理学国家重点实验室开放基金资助项目(KF2016-15)

摘要: 新烟碱类杀虫剂是目前全球市场占有率最高的一类杀虫剂,它们选择性作用于昆虫烟碱型乙酰胆碱受体,以往普遍认为其对非靶标生物毒性较低。然而,越来越多的证据表明,新烟碱类杀虫剂的暴露会对非靶标生物造成负面影响。本文综述了新烟碱类杀虫剂对水生生物、非靶标昆虫、鸟类和哺乳动物等多种非靶标生物的毒性,以及对人类健康的影响。新烟碱类杀虫剂对各类生物均具有急性致死毒性,但不同物种之间半数致死浓度(LC50)或半数致死剂量(LD50)差别较大,由低至高依次为昆虫(0.01~2.38 mg·L-1,3.7~81 ng bee-1)、甲壳动物(0.59~37.75 mg·L-1)、鱼类(1.2~241 mg·L-1)、鸟类(15~>2 000 mg kg-1)和哺乳动物(82~>5 000 mg kg-1)。新烟碱类杀虫剂对非靶标生物的亚致死毒性表现在降低繁殖力和生长速度、降低活动性、影响神经系统、扰乱代谢平衡、损伤DNA等。总体上看,吡虫啉的毒性最高,呋虫胺和烯啶虫胺的毒性较低。啶虫脒、噻虫啉、噻虫嗪和噻虫胺的毒性大小顺序随物种不同而不同。对于水生生物和非靶标昆虫,噻虫啉和噻虫胺的毒性较高,而对于鸟类和哺乳动物,啶虫脒的毒性较高。最后针对现有研究的不足,提出了今后的研究方向,以期为该类杀虫剂的风险评估和合理施用提供科学依据。

English Abstract

参考文献 (106)

目录

/

返回文章
返回