抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除

姚鹏城, 陈嘉瑜, 张永明, 温东辉, 陈吕军. 抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除[J]. 生态毒理学报, 2020, 15(1): 201-208. doi: 10.7524/AJE.1673-5897.20190307004
引用本文: 姚鹏城, 陈嘉瑜, 张永明, 温东辉, 陈吕军. 抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除[J]. 生态毒理学报, 2020, 15(1): 201-208. doi: 10.7524/AJE.1673-5897.20190307004
Yao Pengcheng, Chen Jiayu, Zhang Yongming, Wen Donghui, Chen Lvjun. Distribution and Removal of Antibiotic Resistance Genes in Municipal and Industrial Mixed Wastewater Treatment Systems[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 201-208. doi: 10.7524/AJE.1673-5897.20190307004
Citation: Yao Pengcheng, Chen Jiayu, Zhang Yongming, Wen Donghui, Chen Lvjun. Distribution and Removal of Antibiotic Resistance Genes in Municipal and Industrial Mixed Wastewater Treatment Systems[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 201-208. doi: 10.7524/AJE.1673-5897.20190307004

抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除

    作者简介: 姚鹏城(1993-),男,硕士研究生,研究方向为环境微生物学,E-mail:yaopc7283@163.com
  • 基金项目:

    国家自然科学基金资助项目(51678003)

  • 中图分类号: X171.5

Distribution and Removal of Antibiotic Resistance Genes in Municipal and Industrial Mixed Wastewater Treatment Systems

  • Fund Project:
  • 摘要: 抗生素抗性基因(ARGs)由于其广泛的传播与转移,成为日益严峻的环境问题。污水处理厂(WWTP)被公认为ARGs的主要来源之一。膜生物反应器(MBR)是一种新型污染物去除工艺。在一个具有传统生物处理和膜系统处理的城镇污水处理系统的进水中,检出17种ARGs,并首次检出甲氧苄啶类ARGs。进水中sulΙ基因的绝对丰度最高,随后依次是tetC、sulⅡ、tetW、dfrA1、floR和dfrA13基因。不同的处理系统去除同一种ARGs效果各不相同,MBR对ARGs去除效果显著优于传统生物处理工艺,同一个处理系统处理不同类ARGs,四环素类ARGs被去除的效果显著优于其他ARGs被去除的效果,绝对丰度下降了3.8个数量级。ARGs没有真正意义上的去除,只是从水体转移到污泥中,污泥中的ARGs不断积累。
  • 加载中
  • 杨永青,许继飞,董泰音,等.水体和土壤环境中抗生素抗性基因(ARGs)的污染特征和消除[J].北方农业学报, 2018:46(3):76-82

    Yang Y Q, Xu J F, Dong T Y, et al. Pollution property and reduction of antibiotic resistance genes (ARGs) in aquatic and soil environment[J]. Inner Mongolia Agricultural Science and Technology, 2018, 46(3):76-82(in Chinese)

    Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
    应光国.中国抗生素使用与流域污染[C].大连:中国化学会第30届学术年会摘要集-第二十六分会:环境化学, 2016
    Allen H K, Donato J, Wang H H, et al. Call of the wild:Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259
    李奥林,陈吕军,张衍,等.抗生素抗性基因在两级废水处理系统中的分布和去除[J].环境科学, 2018, 39(10):4593-4600

    Li A L, Chen L J, Zhang Y, et al. Distribution and removal of antibiotic resistance genes in two sequential wastewater treatment plant[J]. Environmental Science, 2018, 39(10):4593-4600(in Chinese)

    Brown P C, Borowska E, Schwartz T, et al. Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments[J]. Science of the Total Environment, 2019, 649:1171-1178
    Xu J, Xu Y, Wang H M, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119:1379-1385
    Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
    Bondarczuk K, Piotrowska-Seget Z. Microbial diversity and antibiotic resistance in a final effluent-receiving lake[J]. Science of the Total Environment, 2019, 650:2951-2961
    张宁,李淼,刘翔.土壤中抗生素抗性基因的分布及迁移转化[J].中国环境科学, 2018, 38(7):2609-2617

    Zhang N, Li M, Liu X. Distribution and transformation of antibiotic resistance genes in soil[J]. China Environmental Science, 2018, 38(7):2609-2617(in Chinese)

    Li Q W, Na G S, Zhang L X, et al. Effects of corresponding and non-corresponding contaminants on the fate of sulfonamide and quinolone resistance genes in the Laizhou Bay, China[J]. Marine Pollution Bulletin, 2018, 128:475-482
    Zhang Y P, Niu Z G. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them[J]. Environmental Pollution, 2018, 236:126-136
    Czekalski N, Diez E G, Burgmann H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake[J]. ISME Journal, 2014, 8(7):1381-1390
    Czekalski N, Berthold T, Caucci S, et al. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland[J]. Frontiers in Microbiology, 2012, 3:106
    Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693
    Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment:A review[J]. Science of the Total Environment, 2013, 447:345-360
    王荣昌,王超颖,曾旭.污水处理过程中抗生素抗性基因的检测及其水平转移机制的研究进展[J].环境化学, 2017, 36(12):2567-2573

    Wang R C, Wang C Y, Zeng X. Detection and horizontal transfer of antibiotic resistance genes during wastewater treatment process[J]. Environmental Chemistry, 2017, 36(12):2567-2573(in Chinese)

    Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations[J]. Chemosphere, 2007, 68(3):428-435
    Barancheshme F, Munir M. Strategies to combat antibiotic resistance in the wastewater treatment plants[J]. Frontiers in Microbiology, 2018, 8:2603
    Laht M, Karkman A, Voolaid V, et al. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load[J]. PLoS One, 2014, 9(8):8
    Narciso-da-Rocha C V. blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospitalurban wastewater treatment plant system[J]. Journal of Global Antimicrobial Resistance, 2014, 2(4):309-315
    Di Cesare A, Eckert E M, D'Urso S, et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research, 2016, 94:208-214
    Lee J, Jeon J H, Shin J, et al. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants[J]. Science of the Total Environment, 2017, 605:906-914
    张衍,陈吕军,谢辉,等.两座污水处理系统中细胞态和游离态抗生素抗性基因的丰度特征[J].环境科学, 2017, 38(9):3823-3830

    Zhang Y, Chen L J, Xie H, et al. Abundance of cell-associated and cell-free antibiotic resistance genes in two wastewater treatment systems[J]. Environmental Science, 2017, 38(9):3823-3830(in Chinese)

    王慧娴.不同方式活化过硫酸钠降解水中甲氧苄啶的研究[D].广州:广东工业大学, 2018:12 Wang H X. Degradation mechanism of trimethoprim by different ways of activated sodium persulfate[D]. Guangzhou:Guangdong University of Technology, 2018:12(in Chinese)
    焦雅楠.印染废水与生活污水中抗生素抗性基因分布差异及机理研究[D].杭州:浙江大学, 2017:32 Jiao Y N. The distribution characteristic and mechanism of antibiotic resistome between dyeing and domestic wastewater[D]. Hangzhou:Zhejiang University, 2017:32(in Chinese)
    McConnell M M, Hansen L T, Jamieson R C, et al. Removal of antibiotic resistance genes in two tertiary level municipal wastewater treatment plants[J]. Science of the Total Environment, 2018, 643:292-300
    Wen Q X, Yang L, Duan R, et al. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China[J]. Environmental Pollution, 2016, 212:34-40
    Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421:173-183
    Zheng W L, Wen X H, Zhang B, et al. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant[J]. Science of the Total Environment, 2019, 646:1293-1303
    Li B, Qiu Y, Li J, et al. Removal of antibiotic resistance genes in four full-scale membrane bioreactors[J]. Science of the Total Environment, 2019, 653:112-119
    Zhang Y, Li A, Dai T, et al. Cell-free DNA:A neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2018, 52(1):248-257
  • 加载中
计量
  • 文章访问数:  2448
  • HTML全文浏览数:  2448
  • PDF下载数:  69
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-07

抗生素抗性基因在生活及工业混合废水处理系统中的分布和去除

    作者简介: 姚鹏城(1993-),男,硕士研究生,研究方向为环境微生物学,E-mail:yaopc7283@163.com
  • 1. 上海师范大学环境与地理科学学院, 上海 200234;
  • 2. 清华大学环境学院, 北京 100084;
  • 3. 北京大学环境科学与工程学院, 北京 100871
基金项目:

国家自然科学基金资助项目(51678003)

摘要: 抗生素抗性基因(ARGs)由于其广泛的传播与转移,成为日益严峻的环境问题。污水处理厂(WWTP)被公认为ARGs的主要来源之一。膜生物反应器(MBR)是一种新型污染物去除工艺。在一个具有传统生物处理和膜系统处理的城镇污水处理系统的进水中,检出17种ARGs,并首次检出甲氧苄啶类ARGs。进水中sulΙ基因的绝对丰度最高,随后依次是tetC、sulⅡ、tetW、dfrA1、floR和dfrA13基因。不同的处理系统去除同一种ARGs效果各不相同,MBR对ARGs去除效果显著优于传统生物处理工艺,同一个处理系统处理不同类ARGs,四环素类ARGs被去除的效果显著优于其他ARGs被去除的效果,绝对丰度下降了3.8个数量级。ARGs没有真正意义上的去除,只是从水体转移到污泥中,污泥中的ARGs不断积累。

English Abstract

参考文献 (32)

目录

/

返回文章
返回