Biological Emergency Monitoring on the Behavior Inhibition of Japanese Medaka (Oryzias latipes) Exposed to Cadmium Chloride, Methomyl and Nitrobenzene

Zhang Liqiao¹,², Liu Yang¹,², Zeng Yang¹,², Fu Xiu'e¹,², Chen Linlin², Ren Zongming²*, Fu Rongshu¹, Zhao Jianping³, Weng Yanbo³

1. College of Life Science, Shandong Normal University, 250014, Ji'nan, China
2. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
3. Ningbo Environmental Monitoring Center, Ningbo 315012, China

Received 15 February 2011 accepted 25 February 2011

Abstract: Behavior inhibition of Japanese medaka (Oryzias latipes) exposed to cadmium chloride, methomyl and nitrobenzene for 7 days was investigated. The results suggested that the behavior inhibition time of the first medaka decreased with the exposure concentrations. The relationship between the time of half behavior inhibition (THBI, Y) and the concentrations (X) was Y = aX^b, in which 20 < a < 28 and -1.2 < b < -0.8. Therefore, biological emergency monitoring based on THBI could be applied in the water pollution accidents, and provide supports to emergency treatment of water pollution accidents.

Keywords: Japanese medaka; cadmium chloride; methomyl; nitrobenzene; emergency monitoring
1 引言(Introduction)

重金属镉及镉盐是化工行业副产物，其排放不仅会导致水生生物的消化、免疫和生殖机能的毒性效应[3-13]，还会对人体健康造成巨大危害。由于氨基甲酸酯类杀虫剂灭多威在农业生产中的广泛施用，因此它可以通过各种途径进入水体，给生物生存造成威胁[4-13]。硝基苯是化学工业中大量使用的化工原料和反应中间体，广泛用于苯胺、农药、鞋油、止痛剂、染料和硝酸纤维素化合物的工业生产中，因此具有潜在的环境危害性。动物实验研究证明，硝基苯具有致癌性，被划分为2B组致癌物，即人类可疑致癌物[15]。

近年来，突发性水体污染事故的频繁发生以及导致的严重后果表明，针对突发性水体污染事故的不可预知、扩散迅速及污染源不明等特点，亟需有效的方法快速监测技术，以实现污染事故的在线监测和快速判断。目前为止，国内外的应急水质监测主要依靠原位理化分析，对水体常规指标进行检测。此方法存在信息准确性低、响应时间长等问题，不能快速准确判断污染物导致的水体毒性效应[15]。

日本青鳉(Oryzias latipes)，原产于日本、朝鲜和台湾等东亚国家和地区的一种小型鱼类。青鳉隶属鳍科，体长7.1 - 5.0 cm，可以忍受低氧和较宽的水温范围，具有性别区分简单、性分化早和繁殖力高等特点。自从Denny对青鳉饲养管理与实验操作进行了规范化后，青鳉作为实验动物被多国世界组织认可，是经济合作与发展组织和国际标准化组织等推荐使用的实验用鱼[15]。

根据不同污染物突发性污染事故对水生态系统和人群健康的威胁及对水体突发性污染源快速监测技术的需求，本研究以水体在线生物安全预警技术为基础[15-18]，采用孵化7 d左右日本青鳉为指示生物，建立针对重金属镉、有机农药灭多威和挥发性有机物硝基苯的应急监测技术，以期实现原位水体污染分析和污染水平判断。

2 材料与方法(Materials and methods)

2.1 实验试剂

氯化镉购自北京北化精细化学品有限责任公司；灭多威购自北京中联化工厂；硝基苯购自江苏强盛化工有限公司。二甲亚砜(DMSO)购自百灵威公司。以上试剂均为分析纯。

2.2 实验材料

实验用水：实验用水为曝气3 d以上的自来水。

实验鱼：日本青鳉，由中国科学院烟台海洋研究所自行繁育，培养方式采用流水养殖，养殖水温为(24 ± 2)℃，光照周期为16 h明8 h暗，刚孵化2 d内，无需投喂饵料，2 d后使用刚孵出的丰年虫作为开口饵料，每天2次饱食投喂。本实验采用孵化7 d左右随机挑选的日本青鳉，体长0.5 - 1.0 cm。

2.3 实验设计

实验用水保持温度24 ± 2℃，pH值为7.8 ± 0.2，溶解氧＞8 mg·L⁻¹，硬度以CaCO₃计为(250 ± 25) mg·L⁻¹，光照周期为16 h明8 h暗。

参照ISO国际标准[10]进行24 h急性毒性实验。氯化镉和灭多威直接溶于水中进行实验；硝基苯先溶于DMSO，并控制DMSO在暴露水体内浓度低于5%，以防止对指示生物产生毒性效应[10]。其中，氯化镉暴露浓度为：0.05 mg·L⁻¹，0.1 mg·L⁻¹，0.2 mg·L⁻¹，0.4 mg·L⁻¹；灭多威暴露浓度为：0.05 mg·L⁻¹，0.1 mg·L⁻¹，0.2 mg·L⁻¹，0.4 mg·L⁻¹和0.8 mg·L⁻¹；硝基苯暴露浓度为：5 mg·L⁻¹，10 mg·L⁻¹，20 mg·L⁻¹，40 mg·L⁻¹和80 mg·L⁻¹。每隔6 h更换一次暴露溶液。实验设定3个平行，每个平行10尾7日龄日本青鳉，实验期间不喂食。用概率单位法求出污染物的24 h半数致死剂量(50% lethal concentration, LC₅₀-24h)。

以污染物对日本青鳉的LC₅₀-24h作为毒性单位TU(toxic unit)[11]，并分别确定1 TU、1.5 TU、2 TU、5 TU、10 TU、20 TU和50 TU暴露下，第1尾日本青鳉开始产生行为抑制的时间。判断日本青鳉行为抑制的标准是：如果日本青鳉不能正常游泳并沉于容器底部，搅动15 s以后，依然不能正常游泳，则认定行为抑制[12]。同时，在第1尾受试日本青鳉出现行为抑制后，基于生物的行为效率比分析日本青鳉整体行为毒性效应程度，并与已有研究结果[13]进行比较，分析日本青鳉行为毒性效应。本研究中，行为效率比是指在不同浓度污染物暴露下第1尾日本青鳉产生行为抑制时，行为抑制个体的百分比。

在此基础上，分析不同浓度污染物暴露下日本青鳉行为抑制所需时间(time of half behavior inhibition, THBI)。THBI通过不同污染物暴露下50%个体行为抑制的时间来确定，并以M ± SD方式表示。结合不同污染物及暴露浓度与日本青鳉THBI之间关系，分析日本青鳉THBI变化规律性，探讨基于污染物暴露浓度及指示生物行为抑制之间关系的
生物应急监测技术的可行性。

3 结果与分析（Results and analysis）

3.1 氯化镉、灭多威和硝基苯对日本青鳉的急性毒性和行为抑制时间

表1为氯化镉、灭多威和硝基苯对7日龄日本青鳉的24 h急性毒性结果。结果表明，7日龄日本青鳉对氯化镉、灭多威和硝基苯的24 h急性毒性反应敏感，氯化镉对日本青鳉毒性效应为中等，灭多威为高毒性，硝基苯为中度毒性。

<table>
<thead>
<tr>
<th>化合物</th>
<th>LC50 - 24h</th>
<th>LC50 - 48h</th>
<th>LC50 - 96h</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯化镉</td>
<td>1.2 ± 0.3 mg L⁻¹</td>
<td>4.9 mg L⁻¹</td>
<td>9.6 mg L⁻¹</td>
</tr>
<tr>
<td>灭多威</td>
<td>0.2 ± 0.04 mg L⁻¹</td>
<td>0.87 mg L⁻¹</td>
<td>1.7 mg L⁻¹</td>
</tr>
<tr>
<td>硝基苯</td>
<td>24.3 ± 8.64 mg L⁻¹</td>
<td>24 mg L⁻¹</td>
<td>24 mg L⁻¹</td>
</tr>
</tbody>
</table>

基于7日龄日本青鳉LC50 - 24h研究结果，不同污染物1 TU, 1.5 TU, 2 TU, 5 TU, 10 TU, 20 TU和50 TU暴露下，第1尾日本青鳉开始产生行为抑制的时间如图1所示。结果表明，不同暴露浓度下，日本青鳉产生行为抑制的时间具有明显差异性，并随暴露浓度的增高，行为抑制所需时间逐渐降低，从1 TU的3 ~ 5 h降至50 TU的10 min左右。不同浓度的污染物暴露中，行为抑制所需时间变化趋势是一致的，随后暴露浓度的升高而逐渐降低。结合任宗明等在2008年研究结果分析[4]，在2 mg L⁻¹氯化镉暴露下（约10 TU），成体日本青鳉产生行为毒性效应时间为超过1 h，在10 mg L⁻¹暴露下（约10 TU），成体日本青鳉产生行为毒性效应时间约为15 min。结果表明，基于TU值进行的暴露实验结果与个体年龄差异无直接相关性，主要与基于TU值变换的暴露浓度相关；同时，生物之间的敏感性差异与化合物的质量浓度（mg L⁻¹）直接相关。

但在不同污染物暴露下，相同暴露浓度中日本青鳉产生行为抑制的时间差异也较明显。在较低浓度暴露下，行为抑制所需时间变化自2.7 h至5.2 h，在较高浓度暴露下，变化范围在6 ~ 20 min。因此，在进行水体突发性污染事故的原位监测时，仅根据第1尾日本青鳉开始产生行为抑制的时间进行水体污染程度的判断可能会因为不同污染物所导致的差异而产生明显偏差，有必要结合一定水域的污染源调查和水质在线理化检测，实现对水体污染的应急监测。

结合不同浓度污染物对日本青鳉行为抑制时间分析（图1），对不同浓度污染物暴露中日本青鳉行为效应比率进行分析（图2）。结果表明，随暴露浓度升高，虽然分析日本青鳉行为毒性效应的暴露时间变短，但产生行为毒性效应的个体比例却逐渐增高，由1 TU的20%左右增加至50 TU的80%以上。不同污染物对日本青鳉产生的行为毒性效应趋势是一致的，随暴露浓度的升高，产生行为毒性效应的个体增多。

![图1 不同浓度污染物暴露下第1尾日本青鳉产生行为抑制的时间](image)
日本青鳉的行为变化与污染物浓度密切相关，结合第1尾日本青鳉产生行为抑制的时间和该时间生物个体产生行为毒性效应比率的分析，有助于突发性污染事故的应急监测和分析。

图2 第1尾日本青鳉产生行为抑制时的行为毒性效应比

Fig. 2 Behavior toxic effect ratio of the first Japanese medaka with behavior inhibiton in different pollutants

3.2 氯化镉、灭多威和硝基苯暴露下日本青鳉半数行为抑制

基于行为抑制时间和行为毒性效应比率分析，进行了1 TU、1.5 TU、2 TU、5 TU、10 TU、20 TU 和50 TU暴露对日本青鳉THBI变化的影响(图3)，目的是量化生物毒性效应和污染物浓度之间关系，实现水质突变变化后原位污染物的定量或半定量监测。不同浓度污染物对7日龄日本青鳉THBI的影响如表2所示。

表2 不同浓度污染物对7日龄日本青鳉THBI的影响

Table 2 Effects of cadmium chloride, methomyl and nitrobenzene on THBI of 7 days old Japanese medaka (Oryzias latipes)

<table>
<thead>
<tr>
<th>化合物</th>
<th>暴露浓度 X 与 THBI 关系分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯化镉</td>
<td>THBI = (242 ± 2.5)x^{1.12 ± 0.04}, R² = 0.97</td>
</tr>
<tr>
<td>灭多威</td>
<td>THBI = (24.7 ± 3.2)x^{0.92 ± 0.11}, R² = 0.91</td>
</tr>
<tr>
<td>硝基苯</td>
<td>THBI = (238 ± 3.7)x^{0.93 ± 0.07}, R² = 0.94</td>
</tr>
</tbody>
</table>

结果显示，不同浓度污染物对7日龄日本青鳉THBI的影响具有明显规律性：在同一污染物中，随暴露浓度增加，THBI显著降低；在同一浓度的不同污染物暴露中，日本青鳉THBI未表现明显差异性；在不同污染物中，随暴露浓度的增加，日本青鳉THBI呈现明显下降，趋势符合与暴露浓度之间的乘幂关系，并符合如下关系：

Y = aX^n

1)

其中，Y 为日本青鳉THBI，为现场监测值；X 为水体内污染物浓度，为分析值；a和 b 为一定范围的系数：20 < a < 28，-1.2 < b < -0.8。

图3 不同浓度污染物暴露对日本青鳉THBI的影响

Fig. 3 Effects of different pollutants on the THBI of Japanese medaka

表2和图3所示的不同浓度污染物导致的日本青鳉THBI规律性表明，行为抑制所需时间与环境胁迫之间存在如方程1所示关系。THBI变化与污染物TU浓度直接相关，可作为本研究中3类污染物原位应急监测的对比分析模型。

4 结果与分析(Results and analysis)

重金属 Cd^{2+} 主要通过与蛋白质分子结合，导致生物体出现运动障碍；灭多威主要抑制乙酰胆碱酯酶活性从而导致生物体的神经系统中毒；硝基苯主要导致植物神经系统紊乱[8-20]。氯化镉、灭多威及硝基苯对日本青鳉的行为毒性效应分析结果表明，不同作用机制的污染物对日本青鳉的行为毒性效应呈现相似的变化趋势，并具明显规律性。通过第1尾日本青鳉产生行为抑制的暴露时间可首先分析水体内
污染物的致有毒水平，但因为不同污染物导致的第1尾日本锦鲤行为抑制产生时间具有明显差异性，因此很难仅据此对水体污染物浓度做出定量分析。

为实现对水体突发性污染事故进行原位应急监测，在日本锦鲤的行为毒性效应研究基础上，分析不同浓度污染物暴露对日本锦鲤 THBI 的影响更有助于进一步定量分析水体污染物导致的综合毒性（TU）。结合原位检测的半数行为抑制所需时间，运用方程 1 进行计算，很容易实现基于 a 和 b 值的水体污染物综合浓度，实现水体污染程度的原位快速监测。

因此，通过行为毒性的实验初步分析获得的 THBI 比对模型，将 THBI 生物行为毒性效应和污染物水体浓度进行统一分析，可初步实现突发性水体污染事故的原位应急监测。但是，由于水体污染物种类繁多，有必要进一步结合其他指示生物，并结合污染物在组织和分子等水平产生的毒性效应，比较不同毒性效应水平在污染物暴露下的变化趋势，以期使水体污染应急监测技术更加规范和完善。

通讯作者简介：任宗明（1978—），男，环境科学博士，副教授，主要研究方向为水生态毒理学，发表学术论文 30 余篇。

参考文献：
Liu Y, Zhang G, Chen L, Ren Z. Stepwise behavioral responses of the Japanese medaka (Oryzias latipes) under the joint stress of Cd²⁺ and 2,4,6-TCP [J]. Water Technol-

