碲化镉量子点对小鼠睾丸组织的氧化损伤

韩莹 1, 谢广云 1,2, 刘娜 1, 肖杨 1, 韩四海 3, 年颖 3, 孙志伟 1, 黄沛力 1,*

1. 首都医科大学公共卫生与家庭医学学院, 北京 100069
2. 中国疾病控制预防中心职业卫生与中毒控制所, 北京 100013
3. 浙江大学工业技术国家重点实验室智能系统与控制研究所分析仪器研究中心, 杭州 310058

摘要：为探讨碲化镉量子点 (CdTe QDs) 对小鼠睾丸的急性氧化损伤作用, 将20只雄性 ICR 小鼠随机分成4组; 对照组、1d, 3d, 7d (3 个不同时间组), 采用尾静脉注射进行一次性染毒 2.5μmol·kg⁻¹ CdTe QDs, 对照组注射等体积生理盐水。染毒后对睾丸的脂质过氧化以及组织中抗氧化酶 (SOD)、过氧化氢酶 (CAT)、谷胱甘肽过氧化酶 (GSH-Px) 活性, 丙二醛 (MDA) 含量分别进行测定。从而检测 CdTe QDs 对睾丸组织的急性氧化损伤作用。结果显示, 与对照组相比, 随染毒时间的延长, 睾丸脂质过氧化酶活性逐渐升高, 而 GSH-Px 和 SOD 活性随染毒时间的延长呈逐渐降低趋势; 而 CAT 活性则逐渐降低, 且与对照组差异显著 (p<0.01); MDA 含量显著高于对照 (p<0.01), 且随时间变化不大。 CdTe QDs 染毒可导致小鼠睾丸组织氧化损伤, 其程度与染毒时间之间具有一定的时间-效应关系。

关键词：量子点；睾丸；脂质过氧化；抗氧化酶；活性氧

文章编号：1673-5897(2010)6-894-05 中图分类号：X171.5 文献标识码：A

Effects of CdTe Quantum Dots on the Antioxidant Enzymes Activity and Lipid Peroxidation in Testes of Mice

HAN Ying¹, XIE Guang-yun¹,², LIU Na¹, XIAO Yang¹, HAN Si-hai³, MU Ying³, SUN Zhi-wei¹, HUANG Pei-li¹,*
1. Department of Toxicology and Sanitary Chemistry, School of Public Health and Family Medicine, Capital Medical University, Beijing 100069
2. Institute for Occupational Health and Poisoning Control, Chinese Center for Disease Control and Prevention, Beijing 100013
3. Research Center for Analytical Instrumentation, State Key Lab. of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310058

Received 13 September 2010 accepted 18 October 2010

Abstract: The purpose of this study was to determine potential acute oxidative damage of cadmium telluride quantum dots (CdTe QD) to the mice testes. Twenty male mice were divided four groups: control and 1, 3, 7d exposure groups. The 1, 3, 7d exposure groups were intraperitoneally injected with CdTe QDs (2.5μmol·kg⁻¹ body weight). Organ coefficients, the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA), as the indicator of lipid peroxidation, were measured. Results showed that compared with the control, no significant difference was found with the exposure time (p>0.05). GSH-Px and SOD activities increased gradually with exposure time. CAT activity decreased gradually with exposure time and significant difference was found between 7d exposure group and control (p<0.01). MDA contents were significantly higher than the control (p<0.01) and no significant difference was found with the exposure time (p>0.05). CdTe QD could induce oxidative damage to the mice testes and there was a time-dose relationship between the damage degree and exposure time.

Keywords: quantum dots (QDs); testes; lipid peroxidation; antioxidant enzymes; reactive oxygen species

收稿日期：2010-09-13 录用日期：2010-10-18
基金项目：国家高技术研究发展计划（863）项目（No. 2006BAK03A09）；国家重点基础研究发展计划（973）项目（No. 2007CB714503）
作者简介：韩莹（1984—），硕士研究生，E-mail: yhanby@hotmail.com；*通讯作者（Corresponding author），E-mail: huangpl@ccmu.edu.cn
1 引言(Introduction)

量子点(Quantum Dots, QDs),又称半导体纳米晶体(Semiconductor nanocrystals),一般由半导体晶体核和外壳组成,其核心可为多种金属与非金属形成的化合物。如 III-V族系列的量子点晶体核有磷化铟(InP)、砷化铟(InAs)、砷化镓(GaAs)等,II-VI族系列的量子点晶体核有硫化锌(ZnS)、硒化锌(ZnSe)、硒化镉(CdSe)和碲化镉(CdTe)等(Medintz et al., 2005; Michalet et al., 2005)。晶体核是量子点产生荧光的基础。量子点外壳不但具有保护核心的作用,还可以结合某些功能基团如硫基、亲和基等,使量子点能够与生物分子结合并具有较好的生物兼容性。由于量子点粒径很小(约2~10 nm),电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此量子点具有良好的荧光性和光化学稳定性(Alivisatos, 1996)。由于其独特的荧光特性,量子点已经广泛应用于荧光探针、药物筛选、医学成像、生物芯片等领域(Gao et al., 2004; So et al., 2006; Cai et al., 2006; Breunig et al., 2008; Sun et al., 2009)。随着量子点应用的日益广泛,其环境和人体暴露量也逐渐增加。研究表明,量子点的毒性与其内在性质、与外界环境的相互作用等因素有关(Hardman, 2006)。其对生态环境以及生物体可能产生的影响及生物安全性逐渐引起各国科技工作者的关注。

目前关于量子点的毒性机制研究,主要集中在重金属元素离子的释放、氧化过程中活性氧的产生以及活性氧自由基介导的氧化应激等方面(Derfus et al., 2004; Cho et al., 2007)。报道多数是以细胞实验为模型,通过细胞存活率等参数来研究其细胞毒性(余强等, 2009),对于整体实验模型的研究相对较少。

本实验以小鼠为动物模型,采用尾静脉给药方式,以丙二醛(MDA)作为脂质过氧化物的指标,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)作为酶性抗氧化能力的指标,初步探讨了量子点暴露时间对小鼠睾丸组织脂质过氧化和抗氧化能力的影响,为进一步研究量子点雄性生殖毒性作用机制提供研究基础。

2 材料与方法(Materials and methods)

2.1 试剂和仪器

试剂: CdTe 红色量子点,由浙江大学工业控制技术国家重点实验室制备(Yan et al., 2008); 超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)及马斯克兰兰蛋白测定试剂盒均购自南京建成生物工程研究所。

仪器: AX200 电子分析天平(日本 Shimadzu 公司); MR23i 型低温高速离心机(美国 Thermo 公司); Mili-Q 超纯水机(法国 Milipore 公司); UV-2450 型紫外可见分光光光度计(日本 Shimadzu 公司); Votex 混旋混合器(上海市其林贝尔仪器制造有限公司); HHW-II 型恒温水浴箱(金坛市实验仪器厂)。

2.2 实验动物及分组

健康 ICR 小鼠 20 只,体重 33~36g,购自中国军事医学科学院。饲养在温度 18~22°C、相对湿度(55±10)%的动物房内,用灭菌颗粒和纯净水喂养。正式实验前,小鼠有一周以上的时间适应本实验室的饲养条件。

20 只小鼠随机分成 4 组:对照组(5 只)和染毒 1d、3d、7d 组(15 只)。CdTe QDs 采用生理盐水悬浮至一定浓度(不进行超声振荡)。实验组每只尾静脉注射 0.2ml CdTe QDs 悬液,使终浓度为 2.5μmol·kg⁻¹,对照组每只静脉注射 0.2ml 生理盐水。

2.3 组织匀浆制备

静脉注射后的 1d、3d 和 7d,分别处死实验组小鼠,剖取睾丸,对照组 5 只小鼠在 7d 时间点按上述方法进行处理。处理后,加入冷生理盐水漂洗,滤纸充分吸干水分,称湿重。加入一定量冰的生理盐水,用玻璃匀浆器在 0~4°C 下制成 10%的组织匀浆,将匀浆液以 4000rpm 的转速离心 15min,取上清,~-20°C 冷藏,备用。

2.4 指标检测

2.4.1 小鼠脏器系数

采用如下公式计算: 脏器系数(%)=脏器重量(g)/体重(g)×100%
2.4.2 生化指标测定

SOD 活性测定采用黄嘌呤氧化酶法,CAT 活性测定采用紫外分光光度法,GSH-Px 活性测定采用 2-硫-2-硝基苯甲酸比色法,MDA 含量测定采用硫代巴比妥酸法,组织蛋白质含量测定采用考马斯亮兰法,上述指标测定严格按照试剂盒操作规程进行。

SOD 酶活性单位定义为：每 mg 组织蛋白在 1mL 反应液中 SOD 抑制率 50% 时所对应的 SOD 量为 1 个酶活性单位 (U)。

CAT 酶活性单位定义为：每 mg 组织蛋白每秒分解吸光度 1 μmol 过氧化氢的量为 1 个活性单位 (U)。

GSH-Px 酶活性单位定义为：每 mg 蛋白质每分钟排除非酶反应的作用，使反应体系中 GSH 混合度降低 1 μmol·L⁻¹ 为 1 个酶活性单位 (U)。

MDA 以每 mg 组织蛋白中 MDA 的 nmol 数表示。

2.5 统计分析

所有实验数据用平均值±标准差表示，使用 SPSS 13.0 软件统计数据，各实验组与对照组之间用单因素方差分析(one-way ANOVA) 进行统计分析，并以 PostHos test 进行各组均数的两两比较，p<0.05 表示有显著性差异，p<0.01 表示差异极显著。

3 结果 (Result)

3.1 CdTe QDs 对小鼠睾丸组织系数的影响

CdTe QDs 对小鼠睾丸组织系数的影响如表 1 所示。随染毒时间的延展，睾丸组织系数呈逐渐降低趋势，各实验组与对照组相比，均无显著性差异 (p>0.05)，表明实验剂量下，CdTe QDs 对小鼠睾丸组织系数没有明显影响。

表 1 CdTe QDs 对小鼠睾丸组织系数的影响 (n=5, ±s)

<table>
<thead>
<tr>
<th>组别</th>
<th>组织系数 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>0.61 ± 0.08</td>
</tr>
<tr>
<td>1d 组</td>
<td>0.68 ± 0.05</td>
</tr>
<tr>
<td>3d 组</td>
<td>0.62 ± 0.04</td>
</tr>
<tr>
<td>7d 组</td>
<td>0.59 ± 0.06</td>
</tr>
</tbody>
</table>

3.2 CdTe QDs 对睾丸组织匀浆 SOD 活性的影响

小鼠睾丸组织匀浆中 SOD 活性变化如图 1 所示。与对照组相比，SOD 活性随染毒时间的延展略微呈逐渐升高趋势，7d 染毒组与对照组无显著差异 (p>0.05)。

图 1 CdTe QDs 对小鼠睾丸中 SOD 活性的影响 (n=5)

Fig.1 The effect of CdTe QDs on SOD activities in mouse testis tissue (n=5)

3.3 CdTe QDs 对睾丸组织匀浆 CAT 活性的影响

小鼠睾丸组织匀浆中 CAT 活性变化如图 2 所示。随着 CdTe QDs 染毒时间延展，CAT 活性逐渐下降，7d 染毒组 CAT 活性显著低于对照组 (p<0.01)。

图 2 CdTe QDs 对小鼠睾丸中 CAT 活性的影响

(n=5; **; compared with the control group, p<0.01)

Fig.2 The effect of CdTe QDs on CAT activities in the mouse testis tissue (n=5; **; compared with the control group, p<0.01)

3.4 CdTe QDs 对睾丸组织匀浆 GSH-Px 活性的影响

小鼠睾丸组织匀浆中 GSH-Px 活性变化如图 3 所示。随着 CdTe QDs 染毒时间延展，GSH-Px 活性略呈升高趋势，7d 染毒组与对照组无显著差异 (p>0.05)。
3.5 QDs 对睾丸组织中 MDA 含量的影响

小鼠睾丸组织匀浆中 MDA 含量的变化如图 4 所示。随着 CdTe QDs 染毒时间延长，MDA 含量变化趋势不明显，7d 染毒组 MDA 含量极显著高于对照组 (p<0.01)。

![图 4 CdTe QDs 对小鼠睾丸中 MDA 含量的影响 (n=5) (**)；与对照组比较，p<0.01]

关于量子点的细胞毒性，目前研究人员通过细胞实验研究认为其机制可能有两个方面：一方面量子点壳层结构由于生物体或外界环境的氧化作用而受到破坏，壳层氧化脱落，进而引起中心核的氧化以及重金属离子的释放；另一方面，氧化过程中产生的活性氧物质 (ROS) 在生物体内又会引起一系列自由基反应，诱发脂质过氧化过程，最终导致细胞凋亡（Tsai 和 Michalet, 2005）．Cho 等（2007）随后证明了上述观点，并认为量子点毒性是游离 Cd²⁺和氧化过程产生的 ROS 共同作用的结果。CAT 活性的显著降低和 MDA 含量的显著升高表明 CdTe QDs 能够对睾丸细胞产生明显的氧化损伤，这种损伤可能也是由于 ROS 的过量生成及脂质过氧化反应所致。SOD 和 GSH-Px 随染毒时间略呈上升趋势，可能是适应性诱导反应所致。

通讯作者简介：黄沛力 (1963-), 女, 首都医科大学公共卫生与家庭医学学院环境卫生学与卫生化学系教授, 博士生导师。研究方向：纳米毒理学与自由基的毒作用机制研究, 参加或主持包括国家自然科学基金、“十一五” 国家高技术研究发展计划 (863 计划)、北京市教育委员会科技发展计划支撑项目等多项研究工作, 发表科研论文 40 余篇。

References

中文参考文献