Cultivar Differences in Toxic Effects of Oxytetracycline on Wheat (Triticum durum)

XIE Xiao-yu 1,2, ZHANG Yong-qing 1, LI Zhao-jun 2,*, LIANG Yong-chao 2,3, YAO Jianhua 2, ZHANG Shu-qing 2

1. College of Life Sciences, Shanxi Normal University, Linfen 041000
2. Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
3. The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, College of Agricultural Sciences, Shihezi University, Shihezi 832003

Received 11 December 2008 accepted 19 January 2009

Abstract: Hydroponic experiments were performed to study the genotypic differences in toxic effects of oxytetracycline, a kind of tetracycline, on the root of wheat (Triticum durum). Results were presented as follows: 1) The significant genotypic differences in responses of wheat to oxytetracycline were found. Among 63 wheat cultivars tested, cultivar Heyou 1 was the most sensitive to oxytetracycline with the EC50 value of 1.25 mg·L⁻¹, and cultivar Yannong 21 was most insensitive to oxytetracycline with the EC50 value of 54.21 mg·L⁻¹. 2) Contents of chlorophyll a, chlorophyll b and total chlorophyll in leaves of the two wheat cultivars tested decreased with the increase of oxytetracycline concentrations. The negative effects of oxytetracycline on the contents of chlorophyll a, chlorophyll b and total chlorophyll were more significant in the sensitive cultivar Heyou 1 than in the insensitive cultivar Yannong 21. 3) In the two wheat cultivars tested, oxytetracycline exhibited more inhibitory effects on chlorophyll a than on chlorophyll b. Oxytetracycline could also decrease the ratio of chlorophyll a to chlorophyll b and such effects of oxytetracycline on the sensitive cultivar were less than on the insensitive cultivar.

Keywords: oxytetracycline; wheat (Triticum durum); toxic effects; genotypic difference; chlorophyll contents
1 引言（Introduction）

近年来，随着集约化畜牧业以及配合饲料工业的发展，四环素类、大环内酯类、青霉素类、氨基糖
类和磺胺/甲氧苄氨嘧啶类抗生素作为饲料添加剂
等越来越被广泛地应用于畜禽养殖业和水产养殖
业中（Haller et al., 2002）。据统计，美国每年动物
养殖业中抗生素的用量约为 11,000 多吨，约占抗
生素总用量的 70% 左右（Halling-Sørensen et al.,
1998）；欧共体每年养殖业中抗生素的消耗量已达
5000 多吨（Kumar et al., 2005b）。在所使用的抗生素
中，土霉素（Oxytetracycline，OTC）和四环素
（Tetracycline）等四环素类抗生素是应用最广泛，使
用量最大的一类抗生素。令人不安的是，抗生素进
入动体体内并不能被完全吸收。研究结果表明，以
母体或代谢物的形式随尿或粪便排出体外的量约
占抗生素用药量的 40%~90%（Halling-Sørensen et al.,
1998）；Jemba，2002；Phillips et al., 2004；Kumar
et al., 2005b）。排出体外后的抗生素代谢物仍然具有
生物活性，能够在环境中进一步形成母体
（Langhammer，1989）。目前关于我国兽用抗生素的
年用量还不是很清楚（孔维栋和朱永官，2007）。张
树清等（2005）对中国 7 省、市、自治区的典型规
模化养殖场畜禽粪便中抗生素的残留分析结果表
明，猪粪中土霉素平均含量为 9.09mg·kg⁻¹，高达
134.75mg·kg⁻¹，四环素平均含量为 5.22mg·kg⁻¹，
高达 78.57mg·kg⁻¹，金霉素平均含量为 3.57mg·
kg⁻¹，最高达到 121.78mg·kg⁻¹。据报道，我国农村每
年畜禽粪便产生量约达 30 亿 t（张江平，2008），且
80%以上的畜禽粪便没有经过处理，而直接被
施于农田，因此我国兽用抗生素的年排放量可能
相当大，其生态与环境安全风险可能很高，有可能
对作物的生长产生不利影响。Kumar 等（2005b）研
究表明玉米（Zea mays L.）、绿葱（Allium cepa L.）
和甘蓝（Brassica oleracea L.）等 3 种农作物能够吸
收氯四环素（Chlortetracycline），但不吸收泰乐菌
素，且 3 种作物体内氯四环素的含量随着肥料（畜
禽粪便）中氯四环素含量的增加而增加。Boxall 等
（2006）研究发现，土培条件下 1mg·kg⁻¹ 土霉素、保
泰松和恩诺沙星可显著抑制胡芦巴和芪菪生长。
（2007）研究发现，当培养液中土霉素浓度高于
0.002mmol·L⁻¹ 时，土霉素即对紫花苜蓿（Medicago sativa L.）生长产生显著的抑制作用，在
0.002~0.20mmol·L⁻¹ 浓度范围内，土霉素对紫花苜
蓿茎和根生长的抑制率分别达 61% 和 85%。然而，
目前有关小麦等作物对抗生素尤其土霉素耐性及其
机制的报道尚不多见。有鉴于此，本文研究了 63
个小麦品种对土霉素耐性的品种间差异及土霉素
胁迫对不同耐性小麦品种叶片叶绿素含量的影响，
以期为农业生产实践中合理规避抗生素污染提供理论依据。

2 材料与方法 (Materials and methods)

2.1 材料

2.1.1 供试小麦品种

供筛选试验用的小麦 (Triticum durum) 品种共
63 个。其中 PH01-24、烟箱 188、济麦 19、烟优 361、
冀麦 38、周麦 18、小黑麦 33、中北 440、郑优 3475、
科麦 1 号、内乡 18、温麦 6 号、平安 6 号、晋麦 7
号、泰山 008、DF412、郑麦 366、CA0045、偃 503、临
远 3158、潍麦 12、柴州 137、烟农 15、豫 50 号、良
星 99、优高 503、核优 1 号、济麦 20、郑 9023、矮抗
58、京 411、西农 2611、CA8686、徐麦 954、京东 8
号、轮 323、轮 987、轮 981、济南 17、偃 4110、曲
麦 16、冀麦 54、绵农 26、烟农 21、皖麦 38、
衡 5386、石家庄 9 号、京冬 11、中优 9507 和烟箱
88 由中国农业科学院作物研究所提供。晋麦 81、
临汾 138、临运 3158、临优 2069、运 22-33、晋麦
80，临丰 615、晋麦 79 号、石 4185、长 6359、临晋
536、临 6 号和长 6878 由山西省农业大学小麦
研究所提供。

2.1.2 供试化学试剂

土霉素（Oxytetracycline Hydrochloride），购于美
国默克公司，纯度 98.9%，实验中所用的其他试剂
均为国产分析纯。

2.2 试验设计及实施

2.2.1 对土霉素敏感与不敏感小麦品种的筛选

根据预试验及张树清等（2005）的研究结果，本
试验设 0（CK），0.8，1.6，3.2，6.4 和 12.8mg·
L⁻¹，共 6 个土霉素处理水平，每个处理重复 4 次。
按照梯度稀释法配制试验所设系列土霉素的水溶
液。分别吸取不同浓度的土霉素水溶液 10 mL 于装
有滤纸的培养皿中。每亩播种 20 粒经常规催芽露
白的小麦种子，然后置于人工气候室（25℃）内暗

2.2.2 土霉素对不同耐性小麦叶片叶绿素含量的影响

小麦品种为经 2.2.1 节试验筛选出来的两个对土霉素具有不同耐性的小麦品种，其中耐 1 号对土霉素较敏感，耐 21 号对土霉素不敏感。种子用 10% H2O2 消毒 30min, 然后用蒸馏水反复冲洗，最后将种子铺在湿润滤纸上置于 37°C 恒温箱内催芽，将萌发后的种子播种于育苗盘内，置于温室(25°C)下生长。待小麦出现第二片真叶时，选择健壮且长势一致的幼苗，移栽到不透光的盛有 2500mL 的 1/2 浓度的霍格兰营养液的塑料盒中，每盘 12 株，进行通气培养。营养液组成为(g·L⁻¹): 0.49 MgSO4·0.5 N KNO3·0.14 KH2PO4·1.18 Ca(NO3)2·7H2O, Fe-EDTA 代替柠檬酸铁作为铁源，微量元素用 Arnon 营养液，营养液每 3 天更换 1 次，1 周后营养液换为完全霍格兰营养液。整个试验在农业生物营养与施肥重点实验室生长室中进行，日温/夜温控制在 25°C/18°C, 光强 10,000Lux，光照时间 14h·d⁻¹。麦苗在 1/2 强度的霍格兰营养液中分别生长至 3 片完全叶时，对小麦进行土霉素处理。设 5 个土霉素处理浓度分别为：0.5, 10, 20 和 40mg·L⁻¹, 每处理重复 3 次。营养液为完全霍格兰营养液，为了防止土霉素降解对试验结果的影响，每天更换 1 次营养液。处理 28d 后采样测定小麦叶片叶绿素含量。

2.3 测定方法

2.3.1 叶绿素含量

叶绿素含量的测定采用比色法（朱广廉等, 1990）, 即: 取有代表性的叶片洗净擦干, 去叶柄及中脉剪碎混匀后，称取 0.5g 叶片置研钵中，加入 2mL 丙酮和少许 CaCO3 研磨。再加入 5mL 体积分数为 80% 的丙酮，磨成浆。将匀浆用体积分数为 80% 的丙酮定容至 10mL。摇匀后马上吸取 2mL 置于试管中，再加入体积分数为 80% 的丙酮进一步提取、离心后，上清液即为提取液。将叶绿素的提取液加入 1cm 光程的比色杯中，用体积分数为 80% 的丙酮为对照，分别测定 440nm、665nm 和 645nm 处的吸光值。叶绿素 a, b 含量 (mg·L⁻¹) 与它们的吸光值 A 之间的关系为: CA = 12.7A665 - 2.69A645; CB = 22.9A665 - 4.68A645; CA+b = 20.2A665+8.02A645。式中 , CA, CB 和 CA+b 分别代表叶绿素 a、叶绿素 b 和叶绿素 a+b(总叶绿素) 的含量。
素处理后，烟农 21 叶片叶绿素 b 含量尽管有所变化，但与其相应的对照相比，差异均不显著，表
明土霉素对烟农 21 叶片叶绿素 b 的含量没有显著影响。就核 1 号小麦品种而言，当水培溶液中
的土霉素含量为 5mg·L⁻¹时，其叶片中叶绿素 b 的含量即显著低于对照，与对照相比降低的幅度达
20.26%。随着溶液中土霉素含量的增加，叶片叶绿素 b 的含量逐渐降低。当水培溶液中的土霉素含
量为 40mg·L⁻¹时，核 1 号叶片叶绿素的 b 含量为 3.54mg·L⁻¹，与对照相比降低 34.48%。
3.2.3 总叶绿素
土霉素对不同耐性小麦品种叶片总叶绿素含量的影响见图 3。由图 3 可知，土霉素处理可以显
著降低两个小麦品种叶片中总叶绿素的含量，且随着水培溶液中土霉素浓度的升高，叶片中总叶
绿素含量逐渐降低。土霉素对不同品种的影响不同。就土霉素敏感品种核 1 号而言，5mg·L⁻¹土
霉素处理，即可显著降低其叶片中总叶绿素的含量，与对照相比，叶片总叶绿素含量降低 22.28%。
就土霉素不敏感品种烟农 21而言，只有当水培液土霉素浓度达到 10mg·L⁻¹时，叶片中总叶绿素含量才
显著低于对照，与对照相比，叶片总叶绿素含量降低 22.44%。尽管随着水培溶液中土霉素浓度的增
加，叶片总叶绿素的含量在不断下降，但是不同土霉素浓度处理之间，烟农 21 叶片中总叶绿素的含
量差异不显著。总体而言，土霉素对核 1 号叶片

3.2.2 叶绿素 b

土霉素对不同耐性小麦叶片叶绿素 b 含量的影响见图 2。由图 2 可知，土霉素对不同耐性小麦
品种叶片叶绿素 b 含量的影响是不同的，存在明显的品种间差异。就烟农 21 小麦品种而言，土霉素
的耐性越强。土霉素对烟农 21 的 EC₅₀ 值为 54.21mg·L⁻¹，表明烟农 21 对土霉素的耐性最强。尽管冀麦
38 的 EC₅₀ 仅为 0.53mg·L⁻¹，但综合叶绿素、光合生理参数等（未发表数据）发现，其对土霉素的耐性
仍高于核 1 号（EC₅₀=1.25mg·L⁻¹），因此本研究中核 1 号对土霉素的耐性最弱。土霉素对烟农
21 的 EC₅₀ 值是其对核 1 号的 43.37 倍。

3.2 土霉素对不同耐性小麦叶片叶绿素含量的影响
3.2.1 叶绿素 a

土霉素对不同耐性小麦（敏感品种；核 1 号；不敏感品种；烟农 21）叶片叶绿素 a 含量的影响见
图 1。由图 1 可知，土霉素可显著降低两个小麦品种叶片中叶绿素 a 的含量。就同一品种而言，小麦
叶片叶绿素含量随溶液中土霉素浓度的升高而逐渐降低。就不同品种而言，土霉素对核 1 号叶片
叶绿素含量的影响大于烟农 21。如水培溶液中的土霉素浓度为 40mg·L⁻¹ 时，核 1 号叶片叶绿素 a 的含
量为 11.64mg·L⁻¹，与对照相比降低 45.99%，而烟农 21 片叶的叶绿素 a 的含量为 10.15mg·L⁻¹，
与对照相比降低 41.32%。
中总叶绿素含量的影响强于烟农 21，如当水培溶液中土霉素浓度为 40mg·L^{-1} 时，与各自的对照相比，染Excel 1 号叶片总叶绿素含量降低 43.69%，而烟农 21 叶片总叶绿素含量仅降低 35.21%。

3.2.4 叶绿素 a/b 比值

两品种小麦叶绿素 a/b 比值见图 4。由图 4 可见，土霉素胁迫下，小麦叶片叶绿素 a/b 的比值有降低的趋势，但是染Excel 1 号和烟农 21 叶片叶绿素 a/b 比值受土霉素的影响不同。染Excel 1 号小麦品种而言，土霉素浓度低于 20mg·L^{-1} 的处理，尽管

叶片叶绿素 a/b 比值低于对照，但差异不显著，只有土霉素浓度为 40mg·L^{-1} 的处理，小麦叶片叶绿素 a/b 比值才显著低于对照。就烟农 21 而言，土霉素浓度低于 10mg·L^{-1} 的处理，小麦叶片叶绿素 a/b 比值低于对照，但差异不显著，只有土霉素浓度高于 20mg·L^{-1} 的处理，小麦叶片叶绿素 a/b 比值才显著低于对照。同一浓度土霉素处理情况下，烟农 21 叶片叶绿素 a/b 比值降低的幅度高于染Excel 1 号。如土霉素浓度为 40mg·L^{-1} 的处理，染Excel 1 号叶片叶绿素 a/b 比值为 3.28，与对照相比仅降低 18.41%，而烟农 21 叶片叶绿素 a/b 比值则为 2.25，与对照相比降低 30.56%。

4 讨论（Discussion）

本研究结果表明，土霉素对 63 个小麦品种的根系生长具有明显的抑制作用，这与 Kong 等（2007）关于土霉素能够显著抑制紫花苜蓿（Medicago sativa L.）生长的结果一致。本研究同时还发现了土霉素对小麦根系影响的品种间差异。所试的 63 个品种对土霉素的 EC_{50} 值介于 0.53~5.21mg·L^{-1} 之间，综合考虑 EC_{50}、叶绿素、光合生理参数等指标，烟农 21 和染Excel 1 号对土霉素耐性和最强的小麦品种。此前也有关于微生物尤其是病原对土霉素等抗生素耐性不同的报道（李兆君等，2008），但是鲜见关于不同品种间植物对土霉素等抗生素的耐性差异性的报道。收集与筛选不同抗性小麦品种，合理规避抗生素污染具有重要意义。有关不同品种间的耐性差异机理值得进一步研究。

叶绿素是植物进行光合作用的主要光合色素之一，其与植物光合速率具有极显著的相关性（Buttery et al., 1981; Secor et al., 1982）。本研究表明，土霉素能够显著降低小麦叶片叶绿素的含量，这与焦少俊等（2008）关于四环素能够降低牧草叶绿素含量的实验结果一致。但土霉素对小麦叶片叶绿素的影响明显不同于其他有机污染物。孙成芬等（2009）发现土壤低浓度土霉素（土壤苔藓浓度低于 100mg·kg^{-1} ）对玉米苗期叶片叶绿素含量具有促进作用，而高浓度时（土壤苔藓浓度高于 100mg·kg^{-1} ）才显著降低玉米苗期叶片叶绿素含量。本研究中，仅在所有供试浓度范围内，土霉素均能够降低小麦叶片叶绿素的含量。焦少俊等（2008）和解晓瑜（2009）的结果均表明，土霉素之所以显著降低了小麦叶片叶绿素的含量，其原因在
于土霉素破坏了小麦叶片叶绿体超微结构，导致了叶绿体片层结构紊乱。值得注意的是，土霉素对小麦叶片叶绿素含量的影响同样存在品种间差异。土霉素相同胁迫程度下，土霉素敏感品种核苷 1 号受土霉素的影响程度显著高于土霉素耐性品种烟稻 21，导致这种种间差异的机制目前还不是很清楚，有待于进一步研究。叶绿素是叶绿体中主要的色素成分，在光能的吸收、传递和转换中起着重要的作用，直接决定叶片光合作用强度，而植物 95%以上的干物质是由光合作用提供的，光合作用效率对作物产量高低具有决定性作用。本研究中，低浓度土霉素（5mg·L⁻¹）胁迫下，土霉素不敏感小麦品种烟稻 21 叶片叶绿素含量降低幅度明显低于土霉素敏感小麦品种核苷 1 号，且与对照相比显著不显著（图 3），表明在土霉素低污染土壤上种植土霉素耐性小麦品种烟稻 21，将会在一定程度上降低土霉素污染所造成的农业损失。本研究结果还表明，土霉素对小麦叶片叶绿素 a 含量的影响大于其对叶绿素 b 的影响，且对土霉素敏感品种的影响明显强于土霉素品种。土霉素胁迫条件下，2 个小麦品种叶片叶绿素 a 下降的幅度均高于叶绿素 b 图 1 和图 2）。这表明土霉素胁迫将在一定程度上，降低小麦叶绿素的含量，同时降低小麦叶片对阳光的吸收能力，从而降低小麦叶片的光合速率，进而抑制小麦的生长（史宏志等，1999）。叶绿素 a/b 的值可以反映叶绿体中类囊体的堆叠程度，即类囊体状态的类囊体膜比例的大小，叶绿素 a/b 比值越高，类囊体的堆叠程度越高（Secor et al., 1982）。本研究结果表明，土霉素胁迫条件下，2 个小麦品种叶片叶绿素 a/b 比值降低，且相同条件下，烟稻 21 叶片叶绿素 a/b 比值降低的幅度大于核苷 1 号（图 4），造成这种品种间差异的机理目前尚不清楚，有待于进一步研究。

通讯作者简介：李兆君（1974—），男，博士，中国农业科学院农业资源与农业区划研究所副研究员，硕士生导师，中国土壤学会土壤化学专业委员会委员，中国土壤学会土壤生态专业委员会委员，主要从事土壤环境生态学和土壤生物肥力等方面的研究。

References


中文参考文献


唐启义，冯明光. 1997. 数据处理系统[M]. 北京：中国农业出版社

解晓瑜. 2009. 土霉素对小麦毒性效应的品种间差异及其机理研究[D]. 临汾：山西师范大学，34–40

