十溴联苯醚(BDE-209)对成年大鼠甲状腺激素的影响
李欣年，黄敏，虞太六

上海大学射线应用研究所，上海 201800

摘要：多溴联苯醚(PBDEs)是现代工业中广泛应用的溴系阻燃剂，PBDEs 具有持久性有机卤素污染物(Organohalogen Contaminants, OHCs)和内分泌干扰物(Endocrine Disruptors, EDs)的化学物理特性。PBDEs 的生物毒性也是国际上环境生态学的关注热点。论文建立了十溴联苯醚(BDE-209)暴露剂量的成年大鼠模型，测定了不同暴露剂量的实验动物血清甲状腺激素(Thyroid hormones, THs)水平，初步研究了 PBDEs 污染物对生物体甲状腺激素的影响。BDE-209 的量-效关系研究结果表明，增加 TT4, FT4 和 FT3 浓度均随着暴露剂量的提高而下降，这可能是 BDE-209 对甲状腺合成分泌 TT4, TT3 起到了抑制作用。不同 BDE-209 暴露剂量下，TT4~FT4 以及 TT3~TT4 的正相关系数大于 FT4~TT4 以及 FT3~FT3，这意味着 BDE-209 暴露对于 T4 从甲状腺激素转运结合蛋白(Thyroxine, TTR)的分离与脱碘过程影响不明显，而影响了结合态 T4，从而对甲状腺激素的平衡具有干扰效应。采用基线分解分析法，研究了 BDE-209 对于甲状腺干扰相对效应的时间-效应关系，实验表明由于甲状腺的应激作用，对于毒性具有自我防御功能，BDE-209 对甲状腺的干扰效应在 5~8d 后才有所显现，持续时间至少为 14d。

关键词：多溴联苯醚 (PBDEs); 十溴联苯醚 (BDE-209); 甲状腺激素 (THs); 溴系阻燃剂; 生物毒性

文章编号：1673 - 5897(2009)4 - 500 - 07 中图分类号：X503.1, X503.2 文献标识码：A

Disturbance of Decabrominated Diphenyl Ether (BDE-209) to Thyroid Hormones of Adult Rats in Vivo

LI Xin-nian*, HUANG Min, YU Tai-liu
Applied Radiation Institute, Shanghai University, Shanghai 201800
Received 8 September 2008 accepted 24 December 2008

Abstract: Polyybrominated diphenyl ethers (PBDEs) are brominated flame retardants used in modern industry. PBDEs share close physicochemical properties with other persistent organohalogen contaminants (OHCs) and endocrine disrupters (EDs). The biotoxicity of PBDEs has been paid close attention by world environmental ecologists. In this paper, serum thyroid hormones (THs) level of the adult rats exposed to decabrominated diphenyl ether (BDE-209) at different doses was determined and the influence of BDE-209 to thyroid hormones (THs) was studied preliminarily. The dose dependent relationships between THs and BDE-209 concentrations were studied. The results indicated that TT4, FT4 and TT3 concentrations were significantly decreased with the increase of BDE-209 exposure doses in the treatment groups. It seemed that THs (T3, T4) synthesis and release of thyroid body were inhibited by BDE-209. The positive correlation coefficients of TT4~FT4 and TT3~TT4 at different BDE-209 exposure doses were higher than those of FT4~TT4 and FT3~FT3. It implied that exposure of BDE-209 would not affect obviously the separation from thyroxine (TTR) and deiodination of binding T3, while would affect the separation of binding T3 from TTR and deiodination of free FT3, consequently the balance of thyroid system was disturbed by BDE-209. The time dependent relationships between BDE-209 disturbance relative effects to thyroid body and days were studied using benchmark analysis. The results indicated that the disturbance effects of BDE-209 in thyroid system would appear after 5 to 8 days and last at least 14 days due to the strain of thyroid and anti-toxin defense system of living body.

Keywords: polyybrominated diphenyl ethers (PBDEs); decabrominated diphenyl ether (BDE-209); thyroid hormones (THs); brominated flame retardants; biotoxicity
1 引言（Instruction）

溴系阻燃剂是工业产品的重要添加剂化合物，多溴联苯醚（Polybrominated diphenyl ethers，PBDEs）和氧化锑（Sb₂O₅）具有良好的协同阻燃作用，广泛应用于电子电气产品等现代工业产品中，有效降低了火灾发生率。然而，由于 PBDEs 不与基质材料形成化学键，因此容易从产品中逸出而进入环境。目前 PBDEs 已在大气、水、土壤、动植物及人体等环境中广泛存在，已成为一种全球性污染物（Ramue et al., 2005; Li et al., 2005）。研究表明，PBDEs 及其代谢产物具有生殖毒性、神经毒性和内分泌干扰作用（Hallgren et al., 2001; Birnbaum and Staskal, 2004; Kuriyama et al., 2007）。有关 PBDEs 的毒性目前引起广泛关注。在 PBDEs 同系物中十溴联苯醚（BDE-209）由于其较低的毒性和生物活性，在 2005 年 10 月被欧盟委员会正式批准列入 RoHS 豁免名单。但无论在欧盟还是在中国，对于 BDE-209 阻燃剂产品的使用仍然存在较大分歧。

Hale 等（2002）研究认为溴联苯醚的 C-Br 键和 C-CI 键弱，在环境中更易于降解为毒性更强的低溴联苯醚同系物，它会引起一系列由于激素失调和肝功能紊乱的慢性病。Stapleton 等（2004）对鲤鱼（Cyprinus carpio）进行了 BDE-209 暴露实验，在鱼肝组织中检测到 5~8-BDEs 的存在，这表明 BDE-209 在生物体内具有脱溴作用。此外 Sellström 等（1998）研究认为，BDE-209 经光裂也会脱溴成为低溴联苯醚。

由于高溴联苯醚对人体和动物的毒性比较小，目前国内外主要研究的是低溴联苯醚（如四溴和五溴联苯醚等）的环境和生态毒性影响，对于 BDE-209 生物毒性研究报道相对较少。El Darree 等（1987）研究认为生物体对 BDE-209 吸收率和代谢快，因此生物富集较低。近已有关于 BDE-209 对甲状腺影响的报道。Van der Ven 等（2007）对雌雄 Wistar 大鼠进行了 BDE-209 连续暴露，发现大鼠甲状腺是 BDE-209 的靶器官，BDE-209 可使总三碘甲腺原氨酸（TT₃）增高。然而目前有关 BDE-209 对甲状腺激素的影响尚不深入，还须进一步研究。

本研究测定了不同 BDE-209 暴露剂量下的大鼠血清甲状腺激素水平，研究了 BDE-209 剂量对实验大鼠甲状腺系统的影响，并测定了 BDE-209 暴露后不同时间的大鼠血清甲状腺激素水平，探讨了 BDE-209 对于甲状腺的时间-效应关系，为深入研究 BDE-209 的甲状腺干扰作用提供了基础依据。

2 材料与方法（Materials and methods）

2.1 动物模型的建立
2.1.1 实验动物

成年的无特定病原体（Specific Pathogen Free, SPF）Sprague-Dawley 雌性大鼠，体重 195~235g。购自上海 SIPPR-BK 实验动物有限公司。

2.1.2 实验药物

BDE-209，纯度大于 97%，购自美国大湖化工产品公司，储藏于棕色试剂瓶中并在室温下保存。将一定量 BDE-209 溶于花生油中制备母液，避光保存。

2.1.3 饲养与暴露方式

在上海交通大学附属第三人民医院动物房按 SPF 级饲养，暴露方式为管饲法，灌胃时间均在每日上午。

2.2 暴露实验

2.2.1 不同暴露剂量 BDE-209 对大鼠血清中甲状腺激素水平的影响

24 只雌性大鼠，生后 8 周，随机分成对照组（花生油）、低剂量组（120mg·kg⁻¹·d⁻¹），中剂量组（350mg·kg⁻¹·d⁻¹）和高剂量（1000mg·kg⁻¹·d⁻¹）4 组，每组 6 只，管饲法每天灌胃 BDE-209。21d 后，3%的戊巴比妥钠按 60mg·kg⁻¹ 剂量注射麻醉后，通过腹部动脉采血，高速离心（2500r·min⁻¹）制取血清，于 -20°C 冷藏，用于生物医学分析。暴露期间大鼠常规饲养。

2.2.2 BDE-209 对于甲状腺激素水平的时间-效应关系

本研究观察了 BDE-209 暴露后甲状腺激素的时间-效应关系，通过甲状腺激素的变化，估计了 BDE-209 干扰效应持续的时间，以初步探索 PBDEs 的毒理宏观动力学。实验方法如下：

60 只雌性大鼠，生后 8 周，随机分成 10 个暴露组，每组 6 只，另设一组对照。暴露组管饲法
天暴露高剂量（1000mg·kg⁻¹·d⁻¹）的BDE-209，连续7d。然后，相隔不同时间（1，3，5，8，14d）分别对暴露组和对照组取样。血清取样方法同前。暴露期间大鼠常规饲养。

2.3 测试分析方法与质量控制
2.3.1 甲状腺激素检测方法

参考赵志英等（2002）和唐伟等（2005）有关动物甲状腺激素检测的方法，本实验采用化学发光酶免疫分析法（Chemiluminescent enzyme immunoassay，CLEIA）测定大鼠血清甲状腺激素水平。采用美国强生公司的Vitros Eci全自动增强化学发光酶免分析仪和强生公司配合的甲状腺激素检测专用试剂，测定大鼠血清样品中总三碘甲腺原氨酸（TT₃）、总四碘甲腺原氨酸（TT₄）、游离三碘甲腺原氨酸（FT₃）和游离四碘甲腺原氨酸（FT₄）浓度，以反映甲状腺激素水平。

2.3.2 大鼠饲料中的PBDEs含量测定

为了避免在大鼠饲养过程中进入有机溴物质，对大鼠饲料进行了中子活化分析（Neutron Activation Analysis，NAA）和气相色谱-质谱分析（GC-MS），分别测定了样品中可萃取持久性有机溴（Extractable persistent organic bromine，EPOBr）和PBDEs同系物含量，饲料中EPOBr含量为62.0ng·g⁻¹，PBDEs同系物含量为10.061ng·g⁻¹。饲料中的PBDEs的含量为ng级，大鼠的暴露剂量为mg级，说明大鼠饲料中有机溴含量对实验不产生干扰。

2.4 数据处理方法

2.4.1 生物检测数据的统计学方法

采用SPSS 10.0 for windows软件进行数据统计处理，同组数据比较采用检验，组间数据比较采用单因素方差分析（One-Way ANOVA），p≤0.05表示有显著性差异。数据用平行组的平均值±标准差（±SD）（n=6）表示。并用Origin 7.5软件进行相关性分析。

2.4.2 生物毒性相对效应的计算方法

考虑到生物医学检测在不同时间测量引起的系统误差，采用基准点方法取得相对效应，以此来表示BDE-209对甲状腺的干扰效应。设暴露组的甲状腺激素测量值为Cᵢ，对照组的甲状腺激素水平测量值为Cᵢ，则比值Aᵢ可表示为清除生物医学检测系统误差后的BDE-209对甲状腺的相对干扰效应：

\[
Aᵢ = \frac{|Cᵢ - Cᵢ|}{Cᵢ} \times 100\%
\]

其中，i=TT₃, TT₄, FT₃, FT₄。(1)

暴露组生物指标测量值与对照组差别越大，即Aᵢ越大，则BDE-209对甲状腺的相对干扰效应越显著。

3 结果与分析（Results and analysis）

3.1 不同BDE-209暴露剂量下大鼠血清中甲状腺激素浓度

不同剂量BDE-209暴露对大鼠血清甲状腺激素浓度的影响如图1所示。由图1可见，血清TT₃和FT₄浓度随BDE-209暴露剂量的增加而逐渐下降，高剂量暴露组大鼠血清TT₃浓度下降至对照组的45%，FT₄浓度下降至对照组的74%。TT₃浓度随BDE-209暴露剂量增大也呈现下降趋势，中剂量暴露下，TT₃下降至对照组的59%。FT₄浓度随BDE-209暴露剂量的增大变化不明显（图1a~d）。

3.2 不同BDE-209暴露剂量组大鼠血清甲状腺激素的相关性分析

对4个BDE-209暴露剂量组的24个大鼠血清样本中测得的4种甲状腺激素进行了相关性分析，其相关性及线性回归方程见图2。

比较而言，TT₃与FT₃和FT₄的浓度变化关系具有较高的正相关性（R=0.909, p<0.0001和R=0.767, p=0.0026）。FT₃与TT₃和FT₄浓度变化的相关性较差（R=0.539, p=0.1690和R=0.670, p=0.0280）。

3.3 BDE-209对于甲状腺激素水平的时间-效应关系

1000mg·kg⁻¹·d⁻¹ BDE-209暴露后不同时间大鼠血清甲状腺激素浓度如表1所示。由表1可见，暴露后1~14d内，暴露组与对照组相比，TT₃浓度显著降低（p<0.05），FT₄浓度在暴露后1d和8d显著降低（p<0.05），其余时间均有减低，但无统计意义。

暴露组TT₃浓度略低于对照组，而FT₄却略高于对照组，二者差异均无统计意义。通过计算暴露后不同时间暴露组和对照组TT₃和FT₄的Aᵢ，得到了BDE-209对于甲状腺的水平-效应关系。如图3所示。

在暴露8d内TT₃的Aᵢ值较小，而在8d后开始增大。在暴露5d内FT₄的Aᵢ值较小，在5d后显著增大，8d后开始下降，12d后下降至约最大值的中值。
图 1 不同 BDE-209 暴露剂量下大鼠血清中 TT₄、FT₃、TT₃、FT₃ 浓度（n=6; * 表示与对照组具有显著性差异，p<0.05）
Fig.1 Concentrations of serum THs of rats exposed to BDE-209 at different doses (n=6; * : compared with the control group, p<0.05)

图 2 不同 BDE-209 暴露剂量组大鼠血清甲硫腺激素的回归分析（n=24）
Fig.2 Regression analysis of serum THs of rats exposed to BDE-209 at different doses (n=24)
表 1 1000mg·kg⁻¹·d⁻¹ BDE-209 暴露后不同时间大鼠血清甲状腺激素浓度

<table>
<thead>
<tr>
<th>时间/d</th>
<th>TT₄/(nmol·L⁻¹)</th>
<th>FT₃/(pmol·L⁻¹)</th>
<th>FT₄/(pmol·L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C 组</td>
<td>D 组</td>
<td>C 组</td>
</tr>
<tr>
<td>1</td>
<td>1.05 ± 0.10</td>
<td>0.98 ± 0.07</td>
<td>43.97 ± 6.43</td>
</tr>
<tr>
<td>3</td>
<td>1.21 ± 0.20</td>
<td>1.14 ± 0.19</td>
<td>49.72 ± 12.64</td>
</tr>
<tr>
<td>5</td>
<td>1.10 ± 0.24</td>
<td>1.02 ± 0.18</td>
<td>42.18 ± 6.38</td>
</tr>
<tr>
<td>8</td>
<td>1.16 ± 0.22</td>
<td>1.06 ± 0.19</td>
<td>42.02 ± 5.62</td>
</tr>
<tr>
<td>14</td>
<td>1.19 ± 0.11</td>
<td>1.00 ± 0.14</td>
<td>44.62 ± 6.77</td>
</tr>
</tbody>
</table>

注：C 组为对照组；D 组为暴露组；n = 6；* 表示与对照组具有显著性差异，p < 0.05

图 3 BDE-209 对大鼠血清甲状腺的相对干扰效应与时间的关系
Fig 3 Relationship between BDE-209 relative disturbance effects on the thyroid of rats and days

4 讨论（Discussion）

4.1 BDE-209 对甲状腺激素水平的影响

甲状腺根据促甲状腺激素（TSH）的水平，合成分泌 T₃ 和少量 T₂，在甲状腺以外的组织中 T₂ 脱碘成为 T₃，T₄ 与 T₂ 释入血液后，以两种形式在血液中运输，一种是与血液中甲状腺激素转运结合蛋白（Transthyretin，TTR）结合，一种则与 TTR 分离而成游离状态（FT₃、FT₄），两者之间可相互转变，以维持动态平衡。正常情况下，生物的甲状腺激素系统处于平衡状态，若生物处于甲状腺激素干扰物暴露状态，则甲状腺激素水平以及结合态与游离态的平衡状态将发生变动。

Hallgren 等(2001)的研究表明，同样暴露情况下，BDE-209 的致毒剂量（1000mg·kg⁻¹·d⁻¹）要比 BDE-47(18mg·kg⁻¹·d⁻¹) 高很多，这是因为高溴联苯醚的有效生物毒性低于低溴联苯醚所致。另外，Hallgren 等(2001) 实验发现 BDE-47 高剂量暴露组的静脉血清 FT₄ 下降的幅度大于 TT₄，而本研究显示甲状腺激素 TT₄ 随 BDE-209 暴露剂量的增大而下降，且 TT₄ 下降趋势比 FT₄ 快（图 1a 和 b），可能是 T₄ 是血液中甲状腺激素的主要成分，全部由甲状腺合成分泌，TT₄ 的下降可能是由于 BDE-209 经过生物体内的化学转化脱糖形成低溴联苯醚，低溴联苯醚的拟 T₃ 作用对甲状腺合成 T₃ 起到了抑制作用；另一方面，PBDEs 含有烃基的代谢物竞争性地与 TTR 结合，导致 T₃ 从 TTR 分离出来而被代谢，T₄ 的合成减弱和代谢加快可能导致 TT₄ 浓度下降。FT₃ 主要由结合态 T₃ 分离而来，FT₄ 的下降受约于 T₄，因此 FT₄ 下降趋势小于 TT₄。

TT₄ 水平随 BDE-209 暴露剂量增大也呈现下降的趋势（图 1c）。T₃ 主要由 T₄ 脱碘而得，BDE-209 暴露剂量增高使得 TT₄ 下降，从而引起 TT₃ 下降。FT₃ 主要由 T₄ 脱碘和结合态 T₃ 与 TTR 分离而得，其来源较复杂，使得 FT₃ 随暴露剂量的变化不明显（图 1d）。

4.2 BDE-209 对结合型和游离型甲状腺激素平衡状态的影响

在无外界因素干扰的情况下，血液中结合态
T₃, T₄ 和游离态 FT₃, FT₄ 之间可以相互转变，使甲状腺激素水平维持动态平衡，也即，T₃ 与 FT₃, T₄ 与 TT₃, TT₄ 以及 FT₄ 之间浓度变化关系应该有正相关性。

TT₃ 分别与 FT₄ 和 TT₄ 的浓度变化关系呈较明显的正相关性（图 2a 和 b），即 TT₃ 分别与 FT₄ 和 TT₄ 之间保持一定的平衡状态，这似乎表示了在本实验的暴露剂量范围内，BDE-209 暴露对于 T₃ 从 TTR 的分离与脱碘过程的影响不明显。FT₃ 分别与 TT₃ 和 FT₄ 浓度变化关系的相关性较差（图 2c 和 d），表示了 FT₃ 分别与 TT₃ 和 FT₄ 之间的平衡态受到影响，这可能是 BDE-209 低溴产物对 T₃ 作用干扰了 T₃ 从 TTR 的分离过程以及 FT₃ 的脱碘过程。由此可见 BDE-209 对甲状腺系统平衡状态有一定的干扰效应。

4.3 BDE-209 对甲状腺的干扰效应随时间的变化

BDE-209 暴露后甲状腺激素水平随暴露时间的变化从一个侧面反映了 PBDEs 进入生物体内后经历的生物吸收、体内的运输、组织和器官内的分布和蓄积、生物转化代谢与排泄等过程。

我们的研究结果初步表明，1）血清 TT₄, FT₄ 和 TT₃ 浓度随 BDE-209 暴露剂量的增大而下降，可能原因是 BDE-209 的低溴产物为低溴联苯醚，联苯醚的拟 T₃ 和拟 T₄ 作用抑制了甲状腺合成分泌并加速了 T₃ 的代谢。2）在本实验的暴露剂量范围内，TT₃~FFT₃ 以及 TT₄~FT₄ 的正相关系数大于 FT₃~TT₃ 以及 FT₄~TF₄，表明 TT₃ 分别与 FT₃ 和 TT₄ 之间均保持一定的平衡状态，而 FT₄ 分别与 TT₃ 和 FT₄ 之间的平衡态受到的影响，这意味着 BDE-209 暴露对于 T₃ 从 TTR 的分离与脱碘过程的影响不明显，而对甲状腺 T₄ 从 TTR 的分离过程以及 FT₄ 的脱碘过程有影响，由此对甲状腺激素的平衡具有干扰效应。3）由于生物甲状腺的应激作用，对于毒物具有自我防御功能，因此 BDE-209 对甲状腺的干扰效应在 5–8d 后才有所显示，持续至少为 14d。

本文根据 BDE-209 的生物实验结果，试图从甲状腺激素水平的变化揭示 PBDEs 的生物毒性效应。对于 PBDEs 对于生物甲状腺作用的缓解机理，对 PBDEs 对 T₃、5-和 5'-脱碘酶活性的影响，与甲状腺激素对于 TTR 的竞争结合等尚需进一步研究。

致谢：感谢上海交通大学附属第三人民医院实验中心和技术支持以及香港城市大学生物与化学系所函的先生的帮助和大力支持。感谢美国和医科大学北京协和医院医学科朱立同志对于 CLIA 方法学的帮助。

通讯作者简介：李欣年（1953 年），研究员，多年从事生物技术在环境科学中的应用研究。

References

Darnauder P O, Tornwall U, Morse D, Klasson-Wehrle E, Brouwer A. 1996. Binding of a 3,3'-4,4'-tetrachlorobiphenyl (CB-77) metabolite to fetal thymicrin and effects on fetal thyroid hormone levels in mice [J]. Toxicology, 106 (1–3): 105–114

Hallgren S, Darnerud P O. 2002. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats - testing interactions and mechanisms for thyroid hormone effects [J]. Toxicology, 177 (2–3): 227–243

Hallgren, S., Sinjar, T., Håkansson, H., Darnerud, P. O. 2001. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice [J]. Archives of Toxicology, 75 (4): 200–208

中文参考文献

◆