广东省信宜-廉江地区地热水中氟的富集过程
Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong
-
摘要: 为查明信宜-廉江地区地热水中氟的富集过程,于2018年4月采集地热水、河水和井水样品23组,采用Piper三线图、Gibbs图和同位素分析来探究高氟地热水的化学特征和分布规律,结合饱和指数、离子比例系数和相关性分析等方法揭示了高氟地热水的富集过程.结果显示,超过65%样品F-含量大于1 mg·L-1,热水样品中超过83%的样品F-含量大于1 mg·L-1,高氟水的水化学类型主要为HCO3-Na型,高氟水表现出富钠、贫钙、弱碱性的特点;氢氧同位素数据表明地热水主要来源于大气降水,高氟水循环路径相对较长;水岩作用和含氟矿物的溶解是地热水中氟的主要来源,含钙矿物的溶解沉淀,吸附解吸作用和阳离子交换作用是地热水氟富集的主要影响因素.Abstract: To investigate the enrichment of fluoride in geothermal water in Xinyi-Lianjiang region, a total number of 23 sets of water samples were collected including geothermal water, river water and groundwater. Piper diagrams, Gibbs chart and isotopes analysis were applied to explore the chemical characteristics and distribution of high fluoride geothermal water. And the enrichment of fluoride in geothermal water was revealed with Saturation index, ion ratio analysis and correlation analysis methods. The results indicated that more than 65% of the samples had a fluoride content above 1 mg·L-1, and more than 83% of the samples was the hot water samples have a fluoride content above 1 mg·L-1, and the geothermal water containing high fluoride was dominated by the hydrochemical type of HCO3-Na. High fluoride groundwater showed high concentrations of Na+, low concentration of Ca2+ and weakly alkaline. The hydrogen and oxygen isotope data indicated that geothermal water was mainly derived from precipitation, and the longer circulation paths existed in high fluoride water. The major fluoride of the geothermal water came from water rock action and dissolution of fluoride-containing minerals. And dissolved sedimentation of calcium-containing minerals, adsorption-desorption and cation exchange were the main influencing factors of fluoride enrichment in geothermal water.
-
Key words:
- geothermal water /
- fluoride /
- hydrogeochemistry /
- hydrochemical characteristics /
- Xinyi-Lianjiang region
-
-
[1] KUNDU N, PANIGRAH M K, SHARMA S P, et al. Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies[J]. Environmental Geology, 2002, 43(1-2):228-235. [2] RANGO T, BIANCHINI G, BECCALUVA L, et al. Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic[J]. Journal of African Earth Sciences, 2010, 57(5):479-491. [3] 生活饮用水卫生标准:GB 5749-2006[S]. 北京:中国标准出版社, 2007. Standards for Drinking Water Quality:GB 5749-2006[S]. Beijing:China Standard Press, 2007 (in Chinese).
[4] OLIVIER J, VENTER J S, JONKER C Z. Thermal and chemical characteristics of hot water springs in the northern part of the Limpopo Province, South Africa[J]. Water SA, 2011, 4(37):427-436. [5] GUO Q H, WANG Y X, LIU W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China[J]. Environmental Geology, 2008, 56(1):197-205. [6] GUO Q H, WANG Y X, LIU W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2009, 180(1):9-20. [7] CAKIN A, GOKCEN G, EROGLU A E, et al. Hydrogeochemistry and environmental properties of geothermal fields. Case Study:Balcova, Izmir-Turkey[J]. Energy Sources, Part A, 2012, 34(8):732-745. [8] 虞岚. 我国部分地下热水中氟的分布与成因探讨[D]. 北京:中国地质大学, 2007. YU L. A study of the occurrence and origin of fluoride in thermal groundwater in some areas of China[D]. Beijing:China University of Geosciences, 2007(in Chinese). [9] 章龙胜. 信宜-廉江断裂带西南段断裂活动性及其发震构造分析[D]. 北京:中国地震局地质研究所, 2016. ZHANG L S. The fault activity and seismogenic analysis of the southwestern segment of Xinyi-Lianjiang Fault Zone in Guangdong Province[D]. Beijing:Institute of Geology, China Earthquake Administration, 2016(in Chinese). [10] LU G P, LIU R F. Aqueous chemistry of typical geothermal springs with deep faults in Xinyi and Fengshun in Guangdong Province, China[J]. Journal of Earth Science, 2015, 26(1):60-72. [11] 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉:中国地质大学, 2013. YUAN J F. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D]. Wuhan:China University of Geosciences, 2013(in Chinese). [12] WANG X, LU G P, HU X N. Hydrogeochemical characteristics and geothermometry applications of thermal waters in coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China[J]. Geofluids, 2018, 1:1-24. [13] GIBBS R J. Mechanisms Controlling World Water Chemistry[J]. Science, 1970, 170(23):1088-1090. [14] MORALES-ARREDONDO J, ESTELLER-ALBERICH M, ARMIENTA HERNáNDEZ M, et al. Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico[J]. Journal of Geochemical Exploration, 2018, 185:93-104. [15] LI J X, ZHOU H L, QIAN K, et al. Fluoride and iodine enrichment in groundwater of North China Plain:Evidences from speciation analysis and geochemical modeling[J]. Science of The Total Environment, 2017, 598:239-248. [16] GUO Q H, WANG Y X, MA T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China[J]. Journal of Geochemical Exploration, 2007, 93(1):1-12. [17] 张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na+ +K+)/Ca2+的关系[J]. 地质与资源, 2004, 13(2):109-111. ZHANG W, FU X F, ZHANG F R. Relationship between fluoride content and temperature, pH, (Na++K+)/Ca2+ in groundwater[J]. Geology and Resources, 2004, 13(2):109-111(in Chinese).
[18] 郭政昇, 王娟, 赵培. 珠江流域大气降水稳定性氢氧同位素特征[J]. 水文, 2017, 37(2):78-82. GUO Z S, WANG J, ZHAO P. Hydrogen and oxygen isotope characteristics of atmospheric precipitation in the pearl River Basin[J]. Journal of China Hydrology, 2017, 37(2):78-82(in Chinese).
[19] 王基华, 林元武, 刘成龙, 等. 张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据[J]. 水文地质工程地质, 2000, 9(4):30-33. WANG J H, LIN Y W, LIU C L, et al. Evidence of hydrogen and oxygen stable isotopes and gas composition in hot springs in the southern part of Zhangjiakou[J]. Hydrogeology & Engineering Geology, 2000, 9(4):30-33(in Chinese).
[20] [21] 刘焱光, 付云霞, 吴世迎. 即墨温泉地热水的氢氧同位素特征及其地质意义[J]. 海岸工程, 2009, 28(2):52-60. LIU Y G, FU Y X, WU S Y. Hydrogen and oxygen isotope characteristics of geothermal water in Jimo Hot spring and its geological significance[J]. Coastal Engineering, 2009, 28(2):52-60(in Chinese).
[22] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468. [23] 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义-以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3):251-254. YIN G, NI S J, ZHANG Q C. Excessive parameters of strontium and its hydrogeological significance-taking Jiuzhaigou and Yele hydrogeology research in Sichuan as an example[J]. Journal of Chengdu University of Technology, 2001, 28(3):251-254(in Chinese).
[24] HANDA B K. Geochemistry and genesis of fluoride-containing ground waters in India[J]. Groundwater, 1975, 13(3):275-281. [25] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148:96-104. [26] WANG Y X, SHVARTSEV S, SU C L. Genesis of arsenic/fluoride-enriched soda water:A case study at Datong,northern China[J]. Applied Geochemistry, 2009, 24(4):641-649. [27] 姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究[D]. 西安:长安大学, 2009. JIANG L. Study on hydrochemical composition formation and evolution mechanisms of the groundwater in oasis of arid areas-A case of yaoba oasis in alashan[D]. Xi'an:Chang' an University, 2009(in Chinese). [28] 乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京:中国地质大学, 2015. WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China Plain[D]. Beijing:China University of Geosciences, 2015(in Chinese). [29] 肖国强, 杨吉龙, 胡云壮, 等. 秦皇岛洋-戴河滨海平原海水入侵过程水文化学识别[J]. 安全与环境工程, 2014, 21(2):32-39. XIAO G Q, YANG J L, HU Y Z, et al. Hydrogeochemical recognition of seawater intrusion process in Yang River and Dai River coastal plain of Qinhuangdao City[J]. Safety an Environmental Engineering, 2014(2):32-39(in Chinese).
[30] ZHU G F, SU Y H, HUANG C L, et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China[J]. Environmental Earth Sciences, 2010, 60(1):139-153. -

计量
- 文章访问数: 1573
- HTML全文浏览数: 1562
- PDF下载数: 72
- 施引文献: 0