曝气条件对浸没式膜生物反应器内流场的影响

陶中兰, 邢世禄, 李春丽, 邱广明, 田瑞. 曝气条件对浸没式膜生物反应器内流场的影响[J]. 环境工程学报, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
引用本文: 陶中兰, 邢世禄, 李春丽, 邱广明, 田瑞. 曝气条件对浸没式膜生物反应器内流场的影响[J]. 环境工程学报, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
Tao Zhonglan, Xing Shilu, Li Chunli, Qiu Guangming, Tian Rui. Effect of aeration conditions on flow field in submerged membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
Citation: Tao Zhonglan, Xing Shilu, Li Chunli, Qiu Guangming, Tian Rui. Effect of aeration conditions on flow field in submerged membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231

曝气条件对浸没式膜生物反应器内流场的影响

  • 基金项目:

    国家自然科学基金资助项目(51263013)

    内蒙古自然科学基金资助项目(2011MS0802)

  • 中图分类号: X703

Effect of aeration conditions on flow field in submerged membrane bioreactor

  • Fund Project:
  • 摘要: 为深入研究流场动力学特性对浸没式膜生物反应器系统内膜面污染的控制,应用fluent软件对浸没式膜生物反应器内气液两相流动进行了三维数值模拟研究。采用标准k-ε湍流模型和欧拉多相流模型,考察了改变曝气条件对膜面气液速度场及气含率分布的影响。模拟结果表明,在相同曝气强度下,1 mm曝气孔径下膜面气液两相的速度增加较孔径2 mm、3 mm的快;曝气孔径为1 mm时,膜面的液相速度随着曝气强度的增加逐渐增大;曝气孔径为1 mm时,曝气量为5.5 m3/h所形成的漩涡区较大,膜面气含率值较高且分布较均匀,气液两相接触面积较大,膜面冲刷效果较好;模拟观察到反应器底部靠近壁面局部气含率较低,不利于活性污泥中微生物的生长,需要进一步优化曝气和反应器结构。
  • 加载中
  • [1] 顾国维, 何义亮. 膜生物反应器在污水处理中的研究与应用. 北京: 化学工业出版社, 2002: 1-2
    [2] Williams M. D., Pirbazari M. Membrane bioreactor process for removing biodegradable organic matter from water. Water Research, 2007, 41(17): 3880-3893
    [3] 曾一鸣. 膜生物反应器技术. 北京: 国防工业出版社, 2007: 21-22
    [4] 张洪杰, 于水利, 赵方波, 等. 膜生物反应器膜污染影响因素的分析. 哈尔滨商业大学学报(自然科学版), 2005, 21(4): 440-443, 448 Zhang Hongjie, Yu Shuili, Zhao Fangbo, et al. Study on factors in membrane fouling of membrane bioreactors. Journal of Harbin University of Commerce(Natural Sciences), 2005, 21(4): 440-443, 448(in Chinese)
    [5] Le-Clech P., Chen V., Fane T. A. G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 2006, 284(1-2): 17-53
    [6] 乔玉柏. 采用气液两相流方法清洗络合—超滤污染膜组件的研究. 上海: 上海交通大学硕士学位论文, 2012: 13-15 Qiao Yubo. Study on gas/liquid two-phase flow method to clean membranes fouled in complexion-ultrafiltration process. Shanghai: Master Dissertation of Shanghai Jiao Tong University, 2012: 13-15(in Chinese)
    [7] 李盈利, 孙宝盛, 臧倩, 等. 曝气方式对一体式膜生物反应器运行特性的影响. 中国给水排水, 2007, 23(7): 74-77 Li Yingli, Sun Baosheng, Zang Qian, et al. Effect of aeration mode on operational performance of submerged membrane bioreactor. China Water & Wastewater, 2007, 23(7): 74-77(in Chinese)
    [8] Li H., Kane A. G., Coster H. G. L., et al. Observation of deposition and removal behaviour of submicron bacteria on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 2003, 217(1-2): 29-41
    [9] Marcel M. Basic principles of membrane technology. Beijing: Tsinghua University Press, 1996:113-123
    [10] Yeo A. P. S., Law A. W. K., Fane A. G. The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry. Journal of Membrane Science, 2007, 304(1-2): 125-137
    [11] 沈娟, 王文华, 徐志刚, 等. 气升式环流反应器流动特性的数值模拟. 上海化工, 2007, 32(6): 12-16 Shen Juan, Wang Wenhua, Xu Zhigang, et al. Numerical simulation of the hydrodynamics of the airlift loop reactor. Shanghai Chemical Industry, 2007, 32(6): 12-16(in Chinese)
    [12] 李春丽, 田 瑞, 张维蔚, 等. 气升式反应器气液两相流流态特性模拟. 环境工程学报, 2012, 6(12): 4333-4338 Li Chunli, Tian Rui, Zhang Weiwei, et al. Simulation on flow pattern of gas-liquid two phase flow in airlift reactor. Chinese Journal of Environmental Engineering 2012, 6(12): 4333-4338(in Chinese)
    [13] 李春丽, 田瑞, 陶中兰, 等. 基于PIV技术的膜生物反应器流场动力特性研究. 工程热物理学报, 2013, 34(3): 501-504 Li Chunli, Tian Rui, Tao Zhonglan, et al. Research of dynamics characteristics of flow field in the MBR based on the PIV technology. Journal of Engineering Thermophysics, 2013, 34(3): 501-504(in Chinese)
    [14] 于艳, 樊耀波, 徐国良, 等. 计算流体力学对膜生物反应器水力学特征的模拟研究. 膜科学与技术, 2011, 31(4): 9-16 Yu Yan, Fan Yaobo, Xu Guoliang, et al. Hydraulic simulation of MBR with computation fluid dynamics. Membrane Science and Technology, 2011, 31(4): 9-16(in Chinese)
    [15] 王福军. 计算流体动力学分析. 北京: 清华大学出版社, 2004: 113-123
    [16] 韩杰, 朱彤, 黄永刚, 等. 浸没板式膜生物反应器中流体运动的数值模拟. 化学与生物工程, 2008, 25(11): 44-47 Han Jie, Zhu Tong, Huang Yonggang, et al. Numerical simulation of fluid movement in submerged flat type membrane bioreactor. Chemistry and Bioengineering, 2008, 25(11): 44-47(in Chinese)
    [17] Brannock M. W. D., Essemiani K. Modelling hydrodynamics in MBR systems using computational fluid dynamics. IWA North American Membrane Research Conference, 2008: 1-8
    [18] Dhotre M. T., Smith B. L. CFD simulation of large-scale bubble plumes: Comparisons against experiments. Chemical Engineering Science, 2007, 62(23): 6615-6630
    [19] Howell J. A., Chua H. C., Arnot T. C. In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. Journal of Membrane Science, 2004, 242(1-2): 13-19
    [20] 李金, 王泽. 浸没式超滤膜过滤器内流场的数值模拟. 三峡大学学报(自然科学版), 2010, 32(3): 14-17 Li Jin, Wang Ze. Numerical simulation of submerged ultrafiltration menbrane filter flow field. Journal of China Three Gorges University(Natural Sciences Edition), 2010, 32(3): 14-17(in Chinese)
    [21] Hassan A. Surface flow generation mechanism induced by a bubble plume. Engineering and Science, 2011, 27(2): 50-67
    [22] Ognier S., Wisniewski C., Grasmick A. Membrane bioreactor fouling in sub-critical filtration conditions: A local critical flux concept. Journal of Membrane Science, 2004, 229(1-2): 171-177
    [23] 林宗虎, 李永光, 卢家才, 等. 气液两相流旋涡脱落特性及工程应用. 北京: 化学工业出版社, 2001: 43-58
    [24] Wang Yuan, Brannock M., Cox S., et al. CFD simulations of membrane filtration zone in a submerged hollow fibre membrane bioreactor using a porous media approach. Journal of Membrane Science, 2010, 363(1-2): 57-66
    [25] Kang Changwei, Hua Jinsong, Lou Jing, et al. Bridging the gap between membrane bio-reactor (MBR) pilot and plant studies. Journal of Membrane Science, 2008, 325(2): 861-871
    [26] Liu Zhengliang, Zheng Ying. PIV study of bubble rising behavior. Powder Technology, 2006, 168(1): 10-20
    [27] Cheng Wen, Murai Y., Yamamoto F. Estimation of the liquid velocity field in two-phase flows using inverse analysis and particle tracking velocimetry. Flow Measurement and Instrumentation, 2005, 16(5): 303-308
    [28] Kim J. S., Lee C. H., Chang I. S. Effect of pump shear on the performance of a crossflow membrane bioreactor. Water Research, 2001, 35(9): 2137-2144
    [29] 张秀华, 王道喜, 尹侠. 气升式环流反应器实验及三维模拟. 化工设备与管道, 2009, 46(4): 22-25 Zhang Xiuhua, Wang Daoxi, Yin Xia. Experiment and 3-D simulation of airlift loop reactor. Process Equipment & Piping, 2009, 46(4): 22-25(in Chinese)
    [30] 陈军. 降低膜生物反应器(MBR)能耗的主要途径. 硅谷, 2010, (10): 161-162 Chen Jun. The way of reduce energy consumption in membrane bioreactor (MBR). Silicon Valley, 2010, (10): 161-162(in Chinese)
    [31] 王正. 膜片式微孔曝气生物反应器内流动与传质的研究. 镇江: 江苏大学硕士学位论文, 2006: 31-46 Wang Zheng. The research of flow and mass transfer in the membrane micropore aeration bioreactor. Zhenjiang: Master Dissertation of Jiangsu University, 2006: 31-46(in Chinese)
  • 加载中
计量
  • 文章访问数:  2276
  • HTML全文浏览数:  1764
  • PDF下载数:  930
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-19
  • 刊出日期:  2015-02-07
陶中兰, 邢世禄, 李春丽, 邱广明, 田瑞. 曝气条件对浸没式膜生物反应器内流场的影响[J]. 环境工程学报, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
引用本文: 陶中兰, 邢世禄, 李春丽, 邱广明, 田瑞. 曝气条件对浸没式膜生物反应器内流场的影响[J]. 环境工程学报, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
Tao Zhonglan, Xing Shilu, Li Chunli, Qiu Guangming, Tian Rui. Effect of aeration conditions on flow field in submerged membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231
Citation: Tao Zhonglan, Xing Shilu, Li Chunli, Qiu Guangming, Tian Rui. Effect of aeration conditions on flow field in submerged membrane bioreactor[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 692-698. doi: 10.12030/j.cjee.20150231

曝气条件对浸没式膜生物反应器内流场的影响

  • 1. 内蒙古工业大学能源与动力工程学院, 呼和浩特 010051
基金项目:

国家自然科学基金资助项目(51263013)

内蒙古自然科学基金资助项目(2011MS0802)

摘要: 为深入研究流场动力学特性对浸没式膜生物反应器系统内膜面污染的控制,应用fluent软件对浸没式膜生物反应器内气液两相流动进行了三维数值模拟研究。采用标准k-ε湍流模型和欧拉多相流模型,考察了改变曝气条件对膜面气液速度场及气含率分布的影响。模拟结果表明,在相同曝气强度下,1 mm曝气孔径下膜面气液两相的速度增加较孔径2 mm、3 mm的快;曝气孔径为1 mm时,膜面的液相速度随着曝气强度的增加逐渐增大;曝气孔径为1 mm时,曝气量为5.5 m3/h所形成的漩涡区较大,膜面气含率值较高且分布较均匀,气液两相接触面积较大,膜面冲刷效果较好;模拟观察到反应器底部靠近壁面局部气含率较低,不利于活性污泥中微生物的生长,需要进一步优化曝气和反应器结构。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回