微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化

马俊伟, 刘杰伟, 刘彦忠, 王洪涛, 岳东北. 微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化[J]. 环境工程学报, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
引用本文: 马俊伟, 刘杰伟, 刘彦忠, 王洪涛, 岳东北. 微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化[J]. 环境工程学报, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
Ma Junwei, Liu Jiewei, Liu Yanzhong, Wang Hongtao, Yue Dongbei. Optimization for kaolin suspension by bioflocculant M-C11 treatment using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
Citation: Ma Junwei, Liu Jiewei, Liu Yanzhong, Wang Hongtao, Yue Dongbei. Optimization for kaolin suspension by bioflocculant M-C11 treatment using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228

微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2008ZX07313-002)

  • 中图分类号: X703

Optimization for kaolin suspension by bioflocculant M-C11 treatment using response surface methodology

  • Fund Project:
  • 摘要: 采用响应曲面法对微生物絮凝剂M-C11处理高岭土悬浊液的过程参数进行优化,选取中心复合实验设计(CCD),以pH、M-C11投加量和CaCl2投加量等因素为自变量,以处理后的高岭土悬浊液絮凝率(Fr)为响应值,并借助扫描电镜对絮凝剂的作用机理进行初步探讨。结果表明,微生物絮凝剂M-C11可显著改善高岭土悬浊液的絮凝性能,且选取的3种单因素水平均可影响絮凝剂活性。经多元回归拟合分析,在M-C11投加量为2.56 mL,CaCl2 投加量为0.37 g/L的最优条件下,微生物絮凝活性实验值可达92.37%,接近模型预测值(92.30%)。CaCl2 投加量对絮凝效果的影响高于M-C11投加量(PCaCl2PM-C11)。Ca2+可中和高岭土颗粒表面负电荷,絮凝剂分子为悬浮颗粒提供吸附结合位点,促进絮体凝聚沉淀,M-C11絮凝机理是电中和、吸附架桥和网捕等联合作用的结果。
  • 加载中
  • [1] 于荣丽, 孙丽娜, 孙铁珩. 微生物絮凝剂絮凝机理的研究概况及例证. 安全与环境学报, 2012, 12(1): 24-26 Yu Rongli, Sun Li'na, Sun Tieheng. Research on the flocculation mechanism of microbial flocculants. Journal of Safety and Environment, 2012, 12(1): 24-26(in Chinese)
    [2] Salehizadeh H., Shojaosadati S. A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 2003, 37(17): 4231-4235
    [3] 郭俊元, 杨春平, 邱国良. 生物絮凝剂与改性沸石复配处理猪场废水厌氧消化液的响应面优化. 中国环境科学, 2012, 32(11): 1999-2005 Guo Junyuan, Yang Chunping, Qiu Guoliang. Application of response surface methodology to composite of bioflocculant and modified zeolite in digested swine wastewater treatment. China Environmental Science, 2012, 32(11): 1999-2005(in Chinese)
    [4] Li Zhong, Zhong Shan, Lei Hengyi, et al. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresource Technology, 2009, 100(14): 3650-3656
    [5] Gao Qi, Zhu Xiuhua, Mu Jun, et al. Using Ruditapes philippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment. Bioresource Technology, 2009, 100(21): 4996-5001
    [6] Ni Fan, Peng Xianjia, He Jinsong, et al. Preparation and characterization of composite bioflocculants in comparison with dual-coagulants for the treatment of kaolin suspension. Chemical Engineering Journal, 2012, 213: 195-202
    [7] Zhang Zhiqiang, Xia Siqiang, Zhao Jianfu, et al. Characterization and flocculation mechanism of high efficiency microbial flocculant TJ-F1 from Proteus mirabilis. Colloids and Surfaces B: Biointerfaces, 2010, 75(1): 247-251
    [8] Zheng Yan, Ye Zhilong, Fang Xuhong, et al. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresource Technology, 2008, 99(16): 7686-7691
    [9] Rao K. J., Kim C. H., Rhee S. K. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochemistry, 2000, 35(7): 639-647
    [10] Kurane R., Hatamochi K., Kakuno T., et al. Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Bioscience, Biotechnology and Biochemistry, 1994, 58(2): 428-429
    [11] 高万超, 杨朝晖, 黄兢, 等. 微生物絮凝剂捕集Cu (II)的响应面优化及机理研究. 环境工程学报, 2011, 5(11): 2411-2416 Gao Wanchao, Yang Chaohui, Huang Jing, et al. Optimization of response surface and the mechanism study of microbial flocculants on capturing Cu (II). Chinese Journal of Environmental Engineering, 2011, 5(11): 2411-2416(in Chinese)
    [12] Xia S., Zhang Z., Wang X., et al. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresource Technology, 2008, 99(14): 6520-6527
    [13] Elkady M. F., Farag S., Zaki S., et al. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresource Technology, 2011, 102(17): 8143-8151
    [14] 杨阿明, 夏四清, 王学江, 等. 奇异变形杆菌TJ-1产絮凝剂的培养基优化研究. 环境科学学报, 2007, 27(12): 1988-1993 Yang Aming, Xia Siqing, Wang Xuejiang, et al. Study on the optimal flocculant-producing culture conditions of Proteus Mirabilis TJ-1. Acta Scientiae Circumstantiae, 2007, 27(12): 1988-1993(in Chinese)
    [15] 郑怀礼, 李林涛, 蒋绍阶, 等. CPAM调质浓缩污泥脱水的影响因素及其机理研究. 环境工程学报, 2009, 3(6): 1099-1102 Zheng Huaili, Li Lintao, Jiang Shaojie, et al. Study on influencing factors and function mechanism of CPAM for regulation of concentrated sludge. Chinese Journal of Environmental Engineering, 2009, 3(6): 1099-1102(in Chinese)
    [16] He Jin, Zou Juan, Shao Zongze, et al. Characteristics and flocculating mechanism of a novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a'. World Journal of Microbiology & Biotechnology, 2010, 26(6): 1135-1141
    [17] Chang G. R., Liu J. C., Lee D. J. CO-conditioning and dewatering of chemical sludge and waste activated sludge. Water Research, 2001, 35(3): 786-794
    [18] Guan Baohong, Yu Jie, Fu Hailu, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution. Water Research, 2012, 46(2): 425-432
    [19] Neyens E., Baeyens J., Dewil R., et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 2004, 106(2-3): 83-92
    [20] 梁琛, 王树众, 公彦猛, 等. 超临界水氧化处理垃圾渗滤液的响应面法优化. 环境科学学报, 2013, 33(12): 3275-3284 Liang Chen, Wang Shuzhong, Gong Yanmeng, et al. Optimization of supercritical water oxidation for landfill leachate treatment by response surface methodology (RSM). Acta Scientiae Circumstantiae, 2013, 33(12): 3275-3284(in Chinese)
    [21] Wang Lili, Ma Fang, Qu Yuanyuan, et al. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World Journal of Microbiology & Biotechnology, 2011, 27(11): 2559-2565
    [22] Prasertsan P., Dermlim W., Doelle H., et al. Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7. Carbohydrate Polymers, 2006, 66(3): 289-297
  • 加载中
计量
  • 文章访问数:  3064
  • HTML全文浏览数:  2308
  • PDF下载数:  926
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-23
  • 刊出日期:  2015-02-07
马俊伟, 刘杰伟, 刘彦忠, 王洪涛, 岳东北. 微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化[J]. 环境工程学报, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
引用本文: 马俊伟, 刘杰伟, 刘彦忠, 王洪涛, 岳东北. 微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化[J]. 环境工程学报, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
Ma Junwei, Liu Jiewei, Liu Yanzhong, Wang Hongtao, Yue Dongbei. Optimization for kaolin suspension by bioflocculant M-C11 treatment using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228
Citation: Ma Junwei, Liu Jiewei, Liu Yanzhong, Wang Hongtao, Yue Dongbei. Optimization for kaolin suspension by bioflocculant M-C11 treatment using response surface methodology[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 677-682. doi: 10.12030/j.cjee.20150228

微生物絮凝剂M-C11处理高岭土悬浊液的响应曲面优化

  • 1. 环境模拟与污染控制国家重点联合实验室, 北京师范大学环境学院, 北京 100875
  • 2. 清华大学环境学院, 北京 100084
基金项目:

国家"水体污染控制与治理"科技重大专项(2008ZX07313-002)

摘要: 采用响应曲面法对微生物絮凝剂M-C11处理高岭土悬浊液的过程参数进行优化,选取中心复合实验设计(CCD),以pH、M-C11投加量和CaCl2投加量等因素为自变量,以处理后的高岭土悬浊液絮凝率(Fr)为响应值,并借助扫描电镜对絮凝剂的作用机理进行初步探讨。结果表明,微生物絮凝剂M-C11可显著改善高岭土悬浊液的絮凝性能,且选取的3种单因素水平均可影响絮凝剂活性。经多元回归拟合分析,在M-C11投加量为2.56 mL,CaCl2 投加量为0.37 g/L的最优条件下,微生物絮凝活性实验值可达92.37%,接近模型预测值(92.30%)。CaCl2 投加量对絮凝效果的影响高于M-C11投加量(PCaCl2PM-C11)。Ca2+可中和高岭土颗粒表面负电荷,絮凝剂分子为悬浮颗粒提供吸附结合位点,促进絮体凝聚沉淀,M-C11絮凝机理是电中和、吸附架桥和网捕等联合作用的结果。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回