水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展

朱爱玲, 曹丹丹, 陈颖, 郭瑛瑛, 阴永光, 李雁宾, 刘景富, 蔡勇. 水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展[J]. 环境化学, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
引用本文: 朱爱玲, 曹丹丹, 陈颖, 郭瑛瑛, 阴永光, 李雁宾, 刘景富, 蔡勇. 水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展[J]. 环境化学, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
ZHU Ailing, CAO Dandan, CHEN Ying, GUO Yingying, YIN Yongguang, LI Yanbin, LIU Jingfu, CAI Yong. Influence of iron-mercury coupling on biogeochemical cycle of mercury in aquatic environment: A review of recent studies[J]. Environmental Chemistry, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
Citation: ZHU Ailing, CAO Dandan, CHEN Ying, GUO Yingying, YIN Yongguang, LI Yanbin, LIU Jingfu, CAI Yong. Influence of iron-mercury coupling on biogeochemical cycle of mercury in aquatic environment: A review of recent studies[J]. Environmental Chemistry, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402

水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展

    通讯作者: 阴永光, E-mail: ygyin@rcees.ac.cn
  • 基金项目:

    国家自然科学基金(21522705,21777178,91543103)和中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC018)资助.

Influence of iron-mercury coupling on biogeochemical cycle of mercury in aquatic environment: A review of recent studies

    Corresponding author: YIN Yongguang, ygyin@rcees.ac.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21522705, 21777178,91543103) and Key Projects for Frontier Sciences of the Chinese Academy of Sciences (QYZDB-SSW-DQC018).
  • 摘要: 汞及其化合物是一类重要的全球污染物.水环境是汞重要的汇,也是汞发生形态转化与生物富集的重要场所.水环境中铁-汞相互作用对汞的生物地球化学循环有重要的影响.本文围绕水环境中铁-汞生物地球化学循环的耦合,讨论并总结了含铁矿物对汞的吸附、硫铁矿物对汞的硫化、溶解性铁与含铁矿物对二价汞的还原、铁对汞微生物甲基化的影响、铁参与的甲基汞降解、铁硫矿物介导二甲基汞生成以及水稻根系铁膜对汞吸收的影响,并进一步对铁-汞耦合对汞的生物地球化学循环影响的未来研究重点进行了展望.
  • 加载中
  • [1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant:Sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10):4967-4983.
    [2] PIRRONE N, CINNIRELLA S, FENG X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmospheric Chemistry and Physics, 2010, 10(13):5951-5964.
    [3] SLEMR F, BRUNKE E G, EBINGHAUS R, et al. Worldwide trend of atmospheric mercury since 1995[J]. Atmospheric Chemistry and Physics, 2011, 11(10):4779-4787.
    [4] ZHANG Y, JACOB D J, HOROWITZ H M, et al. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(3):526-531.
    [5] TONG Y, YIN X, LIN H, et al. Recent decline of atmospheric mercury recorded by Androsace tapete on the Tibetan plateau[J]. Environmental Science & Technology, 2016, 50(24):13224-13231.
    [6] ECKLEY C S, BLANCHARD P, MCLENNAN D, et al. Soil-air mercury flux near a large industrial emission source before and after closure (Flin Flon, Manitoba, Canada)[J]. Environmental Science & Technology, 2015, 49(16):9750-9757.
    [7] HAN Y, KINGSTON H M, BOYLAN H M, et al. Speciation of mercury in soil and sediment by selective solvent and acid extraction[J]. Analytical and Bioanalytical Chemistry, 2003, 375(5):428-436.
    [8] MASON R P, CHOI A L, FITZGERALD W F, et al. Mercury biogeochemical cycling in the ocean and policy implications[J]. Environmental Research, 2012, 119:101-117.
    [9] CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Critical Reviews in Toxicology, 2006, 36(8):609-662.
    [10] UNEP. Global mercury assessment 2013:Sources, emissions, releases and environmental transport[R]. 2013.
    [11] LALONDE J D, AMYOT M, KRAEPIEL A M L, et al. Photooxidation of Hg(0) in artificial and natural waters[J]. Environmental Science & Technology, 2001, 35(7):1367-1372.
    [12] DIEZ E G, LOIZEAU J-L, COSIO C, et al. Role of settling particles on mercury methylation in the oxic water column of freshwater systems[J]. Environmental Science & Technology, 2016, 50(21):11672-11679.
    [13] WANG Y, LI Y, LIU G, et al. Elemental mercury in natural waters:Occurrence and determination of particulate Hg(0)[J]. Environmental Science & Technology, 2015, 49(16):9742-9749.
    [14] LI Y B, CAI Y. Progress in the study of mercury methylation and demethylation in aquatic environments[J]. Chinese Science Bulletin, 2013, 58(2):177-185.
    [15] CHEN Y, YIN Y G, SHI J B, et al. Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(24):2415-2447.
    [16] WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [17] 陈蕾, 张洪霞, 李莹, 等. 微生物在地球化学铁循环过程中的作用[J]. 中国科学. 生命科学, 2016, 46(9):1069-1078.

    CHEN L, ZHANG H X, LI Y, et al. The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9):1069-1078(in Chinese).

    [18] COOPER D C, PICARDAL F F, COBY A J. Interactions between microbial iron reduction and metal geochemistry:Effect of redox cycling on transition metal speciation in iron bearing sediments[J]. Environmental Science & Technology, 2006, 40(6):1884-1891.
    [19] 钟顺清, 仇广乐, 冯新斌. 铁硫耦合影响甲基汞在土壤-水稻系统中迁移转化的研究进展[J]. 生态学杂志, 2017, 36(8):2351-2357.

    ZHONG S Q, QIU G L, FENG X B. Coupling effects of iron and sulfur on the migration and transformation of methylmercury in soil-rice system:A review[J]. Chinese Journal of Ecology, 2017, 36(8):2351-2357(in Chinese).

    [20] WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments:Unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7(4-5):409-433.
    [21] GU B H, MISHRA B, MILLER C, et al. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system[J]. Biogeosciences, 2014, 11(18):5259-5267.
    [22] WARNER K A, BONZONGO J C J, RODEN E E, et al. Effect of watershed parameters on mercury distribution in different environmental compartments in the mobile Alabama river basin, USA[J]. Science of the Total Environment, 2005, 347(1-3):187-207.
    [23] THOMAS R L Distribution of mercury in surficial sediments of lake Huron[J]. Canadian Journal of Earth Sciences, 1973, 10(2):194-204.
    [24] RAMALHOSA E, SEGADE S R, PEREIRA E, et al. Mercury cycling between the water column and surface sediments in a contaminated area[J]. Water Research, 2006, 40(15):2893-2900.
    [25] MERRITT K A, AMIRBAHMAN A. Mercury dynamics in sulfide-rich sediments:Geochemical influence on contaminant mobilization within the Penobscot river estuary, Maine, USA[J]. Geochimica et Cosmochimica Acta, 2007, 71(4):929-941.
    [26] KAPLAN D I, KNOX A S, MYERS J. Mercury geochemistry in wetland and its implications for in situ remediation[J]. Journal of Environmental Engineering-ASCE, 2002, 128(8):723-732.
    [27] MIKAC N, NIESSEN S, OUDDANE B, et al. Effects of acid volatile sulfides on the use of hydrochloric acid for determining solid-phase associations of mercury in sediments[J]. Environmental Science & Technology, 2000, 34(9):1871-1876.
    [28] JOHANNESSON K H, NEUMANN K. Geochemical cycling of mercury in a deep, confined aquifer:Insights from biogeochemical reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2013, 106:25-43.
    [29] MATTY J M, LONG D T. Early diagenesis of mercury in the Laurentian great lakes[J]. Journal of Great Lakes Research, 1995, 21(4):574-586.
    [30] CHADWICK S P, BABIARZ C L, HURLEY J P, et al. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury[J]. Science of the Total Environment, 2006, 368(1):177-188.
    [31] HELLAL J, GUEDRON S, HUGUET L, et al. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction:A column study to mimic reactive transfer in an anoxic aquifer[J]. Journal of Contaminant Hydrology, 2015, 180:56-68.
    [32] KIM C S, RYTUBA J J, BROWN G E. EXAFS study of mercury(Ⅱ) sorption to Fe-and Al-(hydr)oxides I. Effects of pH[J]. Journal of Colloid and Interface Science, 2004, 271(1):1-15.
    [33] KIM C S, RYTUBA J, BROWN G E. EXAFS study of mercury(Ⅱ) sorption to Fe-and Al-(hydr)oxides Ⅱ. Effects of chloride and sulfate[J]. Journal of Colloid and Interface Science, 2004, 270(1):9-20.
    [34] JISKRA M, SAILE D, WIEDERHOLD J G, et al. Kinetics of Hg(Ⅱ) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach[J]. Environmental Science & Technology, 2014, 48(22):13207-13217.
    [35] JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg(Ⅱ) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12):6654-6662.
    [36] GAGNON C, FISHER N S. Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve[J]. Environmental Science & Technology, 1997, 31(4):993-998.
    [37] DESAUZIERS V, CASTRE N, LECLOIREC P. Sorption of methylmercury by clays and mineral oxides[J]. Environmental Technology, 1997, 18(10):1009-1018.
    [38] SUN Y, LV D, ZHOU J S, et al. Adsorption of mercury (Ⅱ) from aqueous solutions using FeS and pyrite:A comparative study[J]. Chemosphere, 2017, 185:452-461.
    [39] LIU J R, VALSARAJ K T, DEVAI I, et al. Immobilization of aqueous Hg(Ⅱ) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2-3):432-440.
    [40] SUN M Y, CHENG G H, GE X L, et al. Aqueous Hg(Ⅱ) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles[J]. Science of the Total Environment, 2018, 621:1074-1083.
    [41] DUAN Y, HAN D S, BATCHELOR B, et al. Application of a reactive adsorbent-coated support system for removal of mercury(Ⅱ)[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 509:623-630.
    [42] GONG Y Y, LIU Y Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles:Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7):3986-3994.
    [43] BOWER J, SAVAGE K S, WEINMAN B, et al. Immobilization of mercury by pyrite (FeS2)[J]. Environmental Pollution, 2008, 156(2):504-514.
    [44] KINNIBURGH D G, JACKSON M L. Adsorption of mercury (Ⅱ) by iron hydrous oxide gel[J]. Soil Science Society of America Journal, 1978, 42(1):45-47.
    [45] BACKSTROM M, DARIO M, KARLSSON S, et al. Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite[J]. Science of the Total Environment, 2003, 304(1-3):257-268.
    [46] SKYLLBERG U, DROTT A. Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(Ⅱ)-an EXAFS study[J]. Environmental Science & Technology, 2010, 44(4):1254-1259.
    [47] KLUSMAN R W, MATOSKE C P. Adsorption of mercury by soils from oil-shale development areas in the Piceance creek basin of northwestern Colorado[J]. Environmental Science & Technology, 1983, 17(5):251-256.
    [48] NDU U, CHRISTENSEN G A, RIVERA N A, et al. Quantification of mercury bioavailability for methylation using diffusive gradient in thin-film samplers[J]. Environmental Science & Technology, 2018, 52(15):8521-8529.
    [49] LIU J R, VALSARAJ K T, DELAUNE R D. Inhibition of mercury methylation by iron sulfides in an anoxic sediment[J]. Environmental Engineering Science, 2009, 26(4):833-840.
    [50] JONSSON S, SKYLLBERG U, NILSSON M B, et al. Mercury methylation rates for geochemically relevant Hg-Ⅱ species in sediments[J]. Environmental Science & Technology, 2012, 46(21):11653-11659.
    [51] HAN S, OBRAZTSOVA A, PRETTO P, et al. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries[J]. Marine Chemistry, 2008, 111(3-4):214-220.
    [52] SVENSSON M, ALLARD B, DUKER A. Formation of HgS-mixing HgO or elemental Hg with S, FeS or FeS2[J]. Science of the Total Environment, 2006, 368(1):418-423.
    [53] JEONG H Y, SUN K, HAYES K F. Microscopic and spectroscopic characterization of Hg(Ⅱ) immobilization by mackinawite (FeS)[J]. Environmental Science & Technology, 2010, 44(19):7476-7483.
    [54] BONE S E, BARGAR J R, SPOSITO G. Mackinawite (FeS) reduces mercury(Ⅱ) under sulfidic conditions[J]. Environmental Science & Technology, 2014, 48(18):10681-10689.
    [55] JEONG H Y, KLAUE B, BLUM J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22):7699-7705.
    [56] ZHANG H, LINDBERG S E. Sunlight and iron(Ⅲ)-induced photochemical production of dissolved gaseous mercury in freshwater[J]. Environmental Science & Technology, 2001, 35(5):928-935.
    [57] ABABNEH F A, SCOTT S L, AL-REASI H A, et al. Photochemical reduction and reoxidation of aqueous mercuric chloride in the presence of ferrioxalate and air[J]. Science of the Total Environment, 2006, 367(2-3):831-839.
    [58] LIN C J, PEHKONEN S O. Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol[J]. Atmospheric Environment, 1997, 31(24):4125-4137.
    [59] AIKOH H. Reduction of mercuric ion in vitro by superoxide anion[J]. Physiological Chemistry and Physics and Medical NMR, 2002, 34(2):185-189.
    [60] AMIRBAHMAN A, KENT D B, CURTIS G P, et al. Kinetics of homogeneous and surface-catalyzed mercury(Ⅱ) reduction by iron(Ⅱ)[J]. Environmental Science & Technology, 2013, 47(13):7204-7213.
    [61] O'LOUGHLIN E J, KELLY S D, KEMNER K M, et al. Reduction of Ag-I, Au-Ⅲ, Cu-Ⅱ, and Hg-Ⅱ by Fe-Ⅱ/Fe-Ⅲ hydroxysulfate green rust[J]. Chemosphere, 2003, 53(5):437-446.
    [62] CRESWELL J E, SHAFER M M, BABIARZ C L, et al. Biogeochemical controls on mercury methylation in the Allequash creek wetland[J]. Environmental Science and Pollution Research, 2017, 24(18):15325-15339.
    [63] WIATROWSKI H A, DAS S, KUKKADAPU R, et al. Reduction of Hg(Ⅱ) to Hg(0) by magnetite[J]. Geochimica et Cosmochimica Acta, 2009, 73(13):A1436-A1436.
    [64] PASAKARNIS T S, BOYANOV M I, KEMNER K M, et al. Influence of chloride and Fe(Ⅱ) content on the reduction of Hg(Ⅱ) by magnetite[J]. Environmental Science & Technology, 2013, 47(13):6987-6994.
    [65] MISHRA B, O'LOUGHLIN E J, BOYANOV M I, et al. Binding of Hg-Ⅱ to high-affinity sites on bacteria inhibits reduction to Hg-0 by mixed Fe-Ⅱ/Ⅲ phases[J]. Environmental Science & Technology, 2011, 45(22):9597-9603.
    [66] PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125):1332-1335.
    [67] COMPEAU G C, BARTHA R. Sulfate-reducing bacteria-principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502.
    [68] GILMOUR C C, ELIAS D A, KUCKEN A M, et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12):3938-3951.
    [69] GILMOUR C C, HENRY E A, MITCHELL R. Sulfate stimulation of mercury methylation in fresh-water sediments[J]. Environmental Science & Technology, 1992, 26(11):2281-2287.
    [70] FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources:Molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1):457-464.
    [71] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
    [72] HAMELIN S, AMYOT M, BARKAY T, et al. Methanogens:Principal methylators of mercury in lake periphyton[J]. Environmental Science & Technology, 2011, 45(18):7693-7700.
    [73] YU R-Q, REINFELDER J R, HINES M E, et al. Mercury methylation by the methanogen Methanospirillum hungatei[J]. Applied and Environmental Microbiology, 2013, 79(20):6325-6330.
    [74] GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20):11810-11820.
    [75] LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis bem[J]. Environmental Science & Technology, 2016, 50(8):4366-4373.
    [76] 司友斌, 孙林, 王卉. Shewanella oneidensis MR-1对针铁矿的还原与汞的生物甲基化[J]. 环境科学, 2015, 36(6):2252-2258.

    SI Y, SUN L, WANG H. Effects of dissimilatory reduction of goethite on mercury methylation by Shewanella oneidensis MR-1[J]. Environmental Science, 2015, 36(6):2252-2258(in Chinese).

    [77] GUEDRON S, GRIMALDI M, GRIMALDI C, et al. Amazonian former gold mined soils as a source of methylmercury:Evidence from a small scale watershed in French Guiana[J]. Water Research, 2011, 45(8):2659-2669.
    [78] GABRIEL M C, KOLKA R, WICKMAN T, et al. Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed-lake systems within the southern boreal shield[J]. Science of the Total Environment, 2009, 407(13):4117-4126.
    [79] ALPERS C N, FLECK J A, MARVIN-DIPASQUALE M, et al. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California:Spatial and seasonal variations in water quality[J]. Science of the Total Environment, 2014, 484:276-287.
    [80] ROTHENBERG S E, AMBROSE R F, JAY J A. Mercury cycling in surface water, pore water and sediments of Mugu lagoon, CA, USA[J]. Environmental Pollution, 2008, 154(1):32-45.
    [81] MITCHELL C P J, GILMOUR C C. Methylmercury production in a Chesapeake Bay salt marsh[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113:G00C04.
    [82] MARVIN-DIPASQUALE M, WINDHAM-MYERS L, AGEE J L, et al. Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA[J]. Science of the Total Environment, 2014, 484:288-299.
    [83] CORREIA R R S, GUIMARAES J R D. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil:The role of different microorganism consortia[J]. Chemosphere, 2017, 167:438-443.
    [84] SI Y B, ZOU Y, LIU X H, et al. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria[J]. Chemosphere, 2015, 122:206-212.
    [85] YU R Q, FLANDERS J R, MACK E E, et al. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments[J]. Environmental Science & Technology, 2012, 46(5):2684-2691.
    [86] BRAVO A G, BOUCHET S, GUEDRON S, et al. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges[J]. Water Research, 2015, 80:245-255.
    [87] BAILEY L T, MITCHELL C P J, ENGSTROM D R, et al. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments[J]. Science of the Total Environment, 2017, 580:1197-1204.
    [88] RYTUBA J J. Mercury mine drainage and processes that control its environmental impact[J]. Science of the Total Environment, 2000, 260(1-3):57-71.
    [89] GANGULI P M, MASON R P, ABU-SABA K E, et al. Mercury speciation in drainage from the new Idria mercury mine, California[J]. Environmental Science & Technology, 2000, 34(22):4773-4779.
    [90] RAMALHOSA E, SEGADE S R, PEREIRA M E, et al. Monomethylmercury behaviour in sediments collected from a mercury-contaminated lagoon[J]. International Journal of Environmental Analytical Chemistry, 2011, 91(1):49-61.
    [91] MEHROTRA A S, HORNE A J, SEDLAK D L Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures:Implications for engineered wetlands[J]. Environmental Science & Technology, 2003, 37(13):3018-3023.
    [92] HAN S, OBRAZTSOVA A, PRETTO P, et al. Biogeochemical factors affecting mercury methylation in sediments of the Venice lagoon, Italy[J]. Environmental Toxicology and Chemistry, 2007, 26(4):655-663.
    [93] MEHROTRA A S, SEDLAK D L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries[J]. Environmental Science & Technology, 2005, 39(8):2564-2570.
    [94] FEYTE S, GOBEIL C, TESSIER A, et al. Mercury dynamics in lake sediments[J]. Geochimica et Cosmochimica Acta, 2012, 82:92-112.
    [95] ULRICH P D, SEDLAK D L. Impact of iron amendment on net methylmercury export from tidal wetland microcosms[J]. Environmental Science & Technology, 2010, 44(19):7659-7665.
    [96] BRAVO A G, ZOPFI J, BUCK M, et al. Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases[J]. ISME Journal, 2018, 12(3):802-812.
    [97] ERICKSON P R, LIN V S. Research highlights:Elucidation of biogeochemical factors influencing methylmercury production[J]. Environmental Science-Processes & Impacts, 2015, 17(10):1708-1711.
    [98] SELLERS P, KELLY C A, RUDD J W M, et al. Photodegradation of methylmercury in lakes[J]. Nature, 1996, 380(6576):694-697.
    [99] HAN X X, LI Y B, LI D, et al. Role of free radicals/reactive oxygen species in MeHg photodegradation:Importance of utilizing appropriate scavengers[J]. Environmental Science & Technology, 2017, 51(7):3784-3793.
    [100] ZHANG T, HSU-KIM H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands[J]. Nature Geoscience, 2010, 3(7):473-476.
    [101] TAI C, LI Y B, YIN Y G, et al. Methylmercury photodegradation in surface water of the Florida Everglades:Importance of dissolved organic matter-methylmercury complexation[J]. Environmental Science & Technology, 2014, 48(13):7333-7340.
    [102] QIAN Y, YIN X, LIN H, et al. Why dissolved organic matter enhances photodegradation of methylmercury[J]. Environmental Science & Technology Letters, 2014, 1(10):426-431.
    [103] ZEPP R G, HOIGNE J, BADER H. Nitrate-induced photooxidation of trace organic-chemicals in water[J]. Environmental Science & Technology, 1987, 21(5):443-450.
    [104] GARDFELDT K, SOMMAR J, STROMBERG D, et al. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase[J]. Atmospheric Environment, 2001, 35(17):3039-3047.
    [105] CHEN J, PEHKONEN S O, LIN C J. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters[J]. Water Research, 2003, 37(10):2496-2504.
    [106] SUDA I, TOTOKI S, TAKAHASHI H. Degradation of methyl and ethyl mercury into inorganic mercury by oxygen free radical-producing systems-involvement of hydroxyl radical[J]. Archives of Toxicology, 1991, 65(2):129-134.
    [107] FAUST B C, HOIGNE J. Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in clouds, fog and rain[J]. Atmospheric Environment Part A-General Topics, 1990, 24(1):79-89.
    [108] HAMMERSCHMIDT C R, FITZGERALD W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan lake[J]. Environmental Science & Technology, 2010, 44(16):6138-6143.
    [109] HAMMERSCHMIDT C R, FITZGERALD W F. Photodecomposition of methylmercury in an Arctic Alaskan lake[J]. Environmental Science & Technology, 2006, 40(4):1212-1216.
    [110] KIM M K, ZOH K D. Effects of natural water constituents on the photo-decomposition of methylmercury and the role of hydroxyl radical[J]. Science of the Total Environment, 2013, 449:95-101.
    [111] PAN S H, FENG C C, LIN J L, et al. Occurrence and photodegradation of methylmercury in surface water of Wen-rui-tang river network, Wenzhou, China[J]. Environmental Science and Pollution Research, 2017, 24(12):11289-11298.
    [112] ZHANG D, YIN Y G, LI Y B, et al. Critical role of natural organic matter in photodegradation of methylmercury in water:Molecular weight and interactive effects with other environmental factors[J]. Science of the Total Environment, 2017, 578:535-541.
    [113] BLACK F J, POULIN B A, FLEGAL A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters[J]. Geochimica et Cosmochimica Acta, 2012, 84:492-507.
    [114] SUN R G, WANG D Y, MAO W, et al. Photodegradation of methylmercury in the water body of the Three Gorges Reservoir[J]. Science China-Chemistry, 2015, 58(6):1073-1081.
    [115] SUN R G, WANG D Y, MAO W, et al. Photodegradation of methylmercury in Jialing River of Chongqing, China[J]. Journal of Environmental Sciences, 2015, 32:8-14.
    [116] VIONE D, FALLETTI G, MAURINO V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science & Technology, 2006, 40(12):3775-3781.
    [117] KRONBERG R M, SCHAEFER J K, BJORN E, et al. Mechanisms of methyl mercury net degradation in alder swamps:The role of methanogens and abiotic processes[J]. Environmental Science & Technology Letters, 2018, 5(4):220-225.
    [118] TONG M, YUAN S H, MA S C, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1):214-221.
    [119] JIA M Q, BIAN X, YUAN S H. Production of hydroxyl radicals from Fe(Ⅱ) oxygenation induced by groundwater table fluctuations in a sand column[J]. Science of the Total Environment, 2017, 584:41-47.
    [120] YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(Ⅱ) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223:422-436.
    [121] LIU X X, YUAN S H, TONG M, et al. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite[J]. Water Research, 2017, 113:72-79.
    [122] ZHANG P, YUAN S H. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids[J]. Geochimica et Cosmochimica Acta, 2017, 218:153-166.
    [123] ZHANG P, YUAN S H, LIAO P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2016, 172:444-457.
    [124] CHENG D, YUAN S H, LIAO P, et al. Oxidizing impact induced by mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals[J]. Environmental Science & Technology, 2016, 50(21):11646-11653.
    [125] MASON R P, FITZGERALD W F. Alkylmercury species in the equatorial Pacific[J]. Nature, 1990, 347(6292):457-459.
    [126] BAYA P A, GOSSELIN M, LEHNHERR I, et al. Determination of monomethylmercury and dimethylmercury in the Arctic marine boundary layer[J]. Environmental Science & Technology, 2015, 49(1):223-232.
    [127] CONAWAY C H, BLACK F J, GAULT-RINGOLD M, et al. Dimethylmercury in coastal upwelling waters, Monterey Bay, California[J]. Environmental Science & Technology, 2009, 43(5):1305-1309.
    [128] WALLSCHLAGER D, HINTELMANN H, EVANS R D, et al. Volatilization of dimethylmercury and elemental mercury from river Elbe floodplain soils[J]. Water Air and Soil Pollution, 1995, 80(1-4):1325-1329.
    [129] LINDBERG S E, SOUTHWORTH G, PRESTBO E M, et al. Gaseous methyl-and inorganic mercury in landfill gas from landfills in Florida, Minnesota, Delaware, and California[J]. Atmospheric Environment, 2005, 39(2):249-258.
    [130] FENG X B, TANG S L, LI Z G, et al. Landfill is an important atmospheric mercury emission source[J]. Chinese Science Bulletin, 2004, 49(19):2068-2072.
    [131] EARLE C D A, RHUE R D, CHYNOWETH D P. Partitioning of mercury among solid, liquid and gas phases following anaerobic decomposition of a simulated solid waste[J]. Water Air and Soil Pollution, 2000, 121(1-4):189-203.
    [132] COSSA D, MARTIN J M, SANJUAN J. Dimethylmercury formation in the Alboran Sea[J]. Marine Pollution Bulletin, 1994, 28(6):381-384.
    [133] FILIPPELLI M, BALDI F. Alkylation of ionic mercury to methylmercury and dimethylmercury by methylcobalamin-simultaneous determination by purge-and-trap GC in-line with FTIR[J]. Applied Organometallic Chemistry, 1993, 7(7):487-493.
    [134] PERROT V, JIMENEZ-MORENO M, BERAIL S, et al. Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes[J]. Chemical Geology, 2013, 355:153-162.
    [135] 孙婷, 王章玮, 陈剑, 等. 气态二甲基汞的发生系统与产生速率[J]. 环境化学, 2016, 35(9):1792-1798.

    SUN T, WANG Z W, CHEN J, et al. Efficient and stable gaseous dimethymercury generation system and generation rate[J]. Environmental Chemistry, 2016, 35(9):1792-1798(in Chinese).

    [136] BALDI F, PARATI F, FILIPPELLI M. Dimethylmercury and dimethylmercury-sulfide of microbial origin in the biogeochemical cycle of Hg[J]. Water Air and Soil Pollution, 1995, 80(1-4):805-815.
    [137] BALDI F, PEPI M, FILIPPELLI M. Methylmercury resistance in Desulfovibrio-desulfuricans strains in relation to methylmercury degradation[J]. Applied Environmental Microbiology, 1993, 59:2479-2485.
    [138] JONSSON S, MAZRUI N M, MASON R P. Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces[J]. Scientific Reports, 2016, 6:27958.
    [139] MENG B, FENG X, QIU G, et al. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8):4951-4958.
    [140] MENG B, FENG X, QIU G, et al. Localization and speciation of mercury in brown rice with implications for pan-Asian public health[J]. Environmental Science & Technology, 2014, 48(14):7974-7981.
    [141] ZHANG H, FENG X, LARSSEN T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9):1183-1188.
    [142] 李云云, 赵甲亭, 高愈希, 等. 根表铁膜的形成和添加硒对水稻吸收转运无机汞和甲基汞的影响[J]. 生态毒理学报, 2014, 9(5), 972-977.

    LI Y Y, ZHAO J T, GAO Y X, et al. Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza sativa L.)[J]. Asian Journal of Ecotoxicology, 2014, 9(5):972-977(in Chinese).

    [143] LI Y, ZHAO J, ZHANG B, et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species[J]. Plant and Soil, 2016, 398(1-2):87-97.
    [144] WANG X, LI B, TAM N F Y, et al. Radial oxygen loss has different effects on the accumulation of total mercury and methylmercury in rice[J]. Plant and Soil, 2014, 385(1-2):343-355.
    [145] WANG X, TAM N F-Y, HE H, et al. The role of root anatomy, organic acids and iron plaque on mercury accumulation in rice[J]. Plant and Soil, 2015, 394(1-2):301-313.
    [146] 黄天元, 邓泓. 汞胁迫下氮磷减施及铁膜形成对水稻幼苗根系生长的影响[J]. 生态学杂志, 2016, 35(9):2417-2421.

    HUANG T Y, DENG H. Effects of reduced nitrogen and phosphorus applications and iron plaque formation on root growth of rice seedlings under mercury stress[J]. Chinese Journal of Ecology, 2016, 35(9):2417-2421(in Chinese).

    [147] ZHANG H, FENG X, ZHU J, et al. Selenium in soil inhibits mercury uptake and trans location in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2012, 46(18):10040-10046.
    [148] 高阿祥, 周鑫斌, 张城铭. 硒(IV)预处理下根表铁膜对水稻幼苗吸收和转运汞的影响[J]. 土壤学报, 2017, 54(4):989-998.

    GAO A X, ZHOU X B, ZHANG C M. Effect of iron plaque on root on uptake and translocation of mercury in rice seedlings treated with selenium(Ⅳ)[J]. Acta Pedologica Sinica, 2017, 54(4):989-998(in Chinese).

    [149] 周鑫斌, 于淑慧, 王文华, 等. 土壤施硒对水稻根表铁膜形成和汞吸收的影响[J]. 西南大学学报, 2014, 36(1):91-95.

    ZHOU X B, YU S H, WANG W H, et al. Effects of application of selenium in soil on the formation of root surface iron plaque and mercury uptake by rice plants[J]. Journal of Southwest University, 2014, 36(1):91-95(in Chinese).

    [150] LI Y Y, ZHAO J T, GUO J X, et al. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils[J]. Chemosphere, 2017, 182:293-300.
    [151] GAO A X, ZHOU X B, ZHANG C M, et al. Effects of phosphorus on uptake and translocation of methylmercury in rice[J]. Toxicological and Environmental Chemistry, 2018, 100(1):68-79.
  • 加载中
计量
  • 文章访问数:  2309
  • HTML全文浏览数:  2309
  • PDF下载数:  127
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-24
朱爱玲, 曹丹丹, 陈颖, 郭瑛瑛, 阴永光, 李雁宾, 刘景富, 蔡勇. 水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展[J]. 环境化学, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
引用本文: 朱爱玲, 曹丹丹, 陈颖, 郭瑛瑛, 阴永光, 李雁宾, 刘景富, 蔡勇. 水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展[J]. 环境化学, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
ZHU Ailing, CAO Dandan, CHEN Ying, GUO Yingying, YIN Yongguang, LI Yanbin, LIU Jingfu, CAI Yong. Influence of iron-mercury coupling on biogeochemical cycle of mercury in aquatic environment: A review of recent studies[J]. Environmental Chemistry, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402
Citation: ZHU Ailing, CAO Dandan, CHEN Ying, GUO Yingying, YIN Yongguang, LI Yanbin, LIU Jingfu, CAI Yong. Influence of iron-mercury coupling on biogeochemical cycle of mercury in aquatic environment: A review of recent studies[J]. Environmental Chemistry, 2019, (7): 1431-1445. doi: 10.7524/j.issn.0254-6108.2018092402

水环境中铁-汞耦合对汞生物地球化学循环的影响研究进展

    通讯作者: 阴永光, E-mail: ygyin@rcees.ac.cn
  • 1. 江汉大学环境与健康研究院, 武汉, 430056;
  • 2. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 3. 中国科学院生态环境研究中心环境纳米技术与健康实验室, 北京, 100085;
  • 4. 中国海洋大学化学化工学院, 青岛, 266100
基金项目:

国家自然科学基金(21522705,21777178,91543103)和中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC018)资助.

摘要: 汞及其化合物是一类重要的全球污染物.水环境是汞重要的汇,也是汞发生形态转化与生物富集的重要场所.水环境中铁-汞相互作用对汞的生物地球化学循环有重要的影响.本文围绕水环境中铁-汞生物地球化学循环的耦合,讨论并总结了含铁矿物对汞的吸附、硫铁矿物对汞的硫化、溶解性铁与含铁矿物对二价汞的还原、铁对汞微生物甲基化的影响、铁参与的甲基汞降解、铁硫矿物介导二甲基汞生成以及水稻根系铁膜对汞吸收的影响,并进一步对铁-汞耦合对汞的生物地球化学循环影响的未来研究重点进行了展望.

English Abstract

参考文献 (151)

返回顶部

目录

/

返回文章
返回