广东省信宜-廉江地区地热水中氟的富集过程

欧浩, 卢国平, 胡晓农, 王贝贝. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
引用本文: 欧浩, 卢国平, 胡晓农, 王贝贝. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
OU Hao, LU Guoping, HU Xiaonong, WANG Beibei. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
Citation: OU Hao, LU Guoping, HU Xiaonong, WANG Beibei. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303

广东省信宜-廉江地区地热水中氟的富集过程

  • 基金项目:

    国家自然科学基金(41572241)资助.

Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong

  • Fund Project: Supported by the National Natural Science Foundation of China (41572241).
  • 摘要: 为查明信宜-廉江地区地热水中氟的富集过程,于2018年4月采集地热水、河水和井水样品23组,采用Piper三线图、Gibbs图和同位素分析来探究高氟地热水的化学特征和分布规律,结合饱和指数、离子比例系数和相关性分析等方法揭示了高氟地热水的富集过程.结果显示,超过65%样品F-含量大于1 mg·L-1,热水样品中超过83%的样品F-含量大于1 mg·L-1,高氟水的水化学类型主要为HCO3-Na型,高氟水表现出富钠、贫钙、弱碱性的特点;氢氧同位素数据表明地热水主要来源于大气降水,高氟水循环路径相对较长;水岩作用和含氟矿物的溶解是地热水中氟的主要来源,含钙矿物的溶解沉淀,吸附解吸作用和阳离子交换作用是地热水氟富集的主要影响因素.
  • 加载中
  • [1] KUNDU N, PANIGRAH M K, SHARMA S P, et al. Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies[J]. Environmental Geology, 2002, 43(1-2):228-235.
    [2] RANGO T, BIANCHINI G, BECCALUVA L, et al. Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic[J]. Journal of African Earth Sciences, 2010, 57(5):479-491.
    [3] 生活饮用水卫生标准:GB 5749-2006[S]. 北京:中国标准出版社, 2007. Standards for Drinking Water Quality:GB 5749-2006[S]. Beijing:China Standard Press, 2007

    (in Chinese).

    [4] OLIVIER J, VENTER J S, JONKER C Z. Thermal and chemical characteristics of hot water springs in the northern part of the Limpopo Province, South Africa[J]. Water SA, 2011, 4(37):427-436.
    [5] GUO Q H, WANG Y X, LIU W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China[J]. Environmental Geology, 2008, 56(1):197-205.
    [6] GUO Q H, WANG Y X, LIU W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2009, 180(1):9-20.
    [7] CAKIN A, GOKCEN G, EROGLU A E, et al. Hydrogeochemistry and environmental properties of geothermal fields. Case Study:Balcova, Izmir-Turkey[J]. Energy Sources, Part A, 2012, 34(8):732-745.
    [8] 虞岚. 我国部分地下热水中氟的分布与成因探讨[D]. 北京:中国地质大学, 2007. YU L. A study of the occurrence and origin of fluoride in thermal groundwater in some areas of China[D]. Beijing:China University of Geosciences, 2007(in Chinese).
    [9] 章龙胜. 信宜-廉江断裂带西南段断裂活动性及其发震构造分析[D]. 北京:中国地震局地质研究所, 2016. ZHANG L S. The fault activity and seismogenic analysis of the southwestern segment of Xinyi-Lianjiang Fault Zone in Guangdong Province[D]. Beijing:Institute of Geology, China Earthquake Administration, 2016(in Chinese).
    [10] LU G P, LIU R F. Aqueous chemistry of typical geothermal springs with deep faults in Xinyi and Fengshun in Guangdong Province, China[J]. Journal of Earth Science, 2015, 26(1):60-72.
    [11] 袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉:中国地质大学, 2013. YUAN J F. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D]. Wuhan:China University of Geosciences, 2013(in Chinese).
    [12] WANG X, LU G P, HU X N. Hydrogeochemical characteristics and geothermometry applications of thermal waters in coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China[J]. Geofluids, 2018, 1:1-24.
    [13] GIBBS R J. Mechanisms Controlling World Water Chemistry[J]. Science, 1970, 170(23):1088-1090.
    [14] MORALES-ARREDONDO J, ESTELLER-ALBERICH M, ARMIENTA HERNáNDEZ M, et al. Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico[J]. Journal of Geochemical Exploration, 2018, 185:93-104.
    [15] LI J X, ZHOU H L, QIAN K, et al. Fluoride and iodine enrichment in groundwater of North China Plain:Evidences from speciation analysis and geochemical modeling[J]. Science of The Total Environment, 2017, 598:239-248.
    [16] GUO Q H, WANG Y X, MA T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China[J]. Journal of Geochemical Exploration, 2007, 93(1):1-12.
    [17] 张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na+ +K+)/Ca2+的关系[J]. 地质与资源, 2004, 13(2):109-111.

    ZHANG W, FU X F, ZHANG F R. Relationship between fluoride content and temperature, pH, (Na++K+)/Ca2+ in groundwater[J]. Geology and Resources, 2004, 13(2):109-111(in Chinese).

    [18] 郭政昇, 王娟, 赵培. 珠江流域大气降水稳定性氢氧同位素特征[J]. 水文, 2017, 37(2):78-82.

    GUO Z S, WANG J, ZHAO P. Hydrogen and oxygen isotope characteristics of atmospheric precipitation in the pearl River Basin[J]. Journal of China Hydrology, 2017, 37(2):78-82(in Chinese).

    [19] 王基华, 林元武, 刘成龙, 等. 张家口南部地区温泉形成的氢氧稳定同位素及气体组成证据[J]. 水文地质工程地质, 2000, 9(4):30-33.

    WANG J H, LIN Y W, LIU C L, et al. Evidence of hydrogen and oxygen stable isotopes and gas composition in hot springs in the southern part of Zhangjiakou[J]. Hydrogeology & Engineering Geology, 2000, 9(4):30-33(in Chinese).

    [20]
    [21] 刘焱光, 付云霞, 吴世迎. 即墨温泉地热水的氢氧同位素特征及其地质意义[J]. 海岸工程, 2009, 28(2):52-60.

    LIU Y G, FU Y X, WU S Y. Hydrogen and oxygen isotope characteristics of geothermal water in Jimo Hot spring and its geological significance[J]. Coastal Engineering, 2009, 28(2):52-60(in Chinese).

    [22] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.
    [23] 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义-以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3):251-254.

    YIN G, NI S J, ZHANG Q C. Excessive parameters of strontium and its hydrogeological significance-taking Jiuzhaigou and Yele hydrogeology research in Sichuan as an example[J]. Journal of Chengdu University of Technology, 2001, 28(3):251-254(in Chinese).

    [24] HANDA B K. Geochemistry and genesis of fluoride-containing ground waters in India[J]. Groundwater, 1975, 13(3):275-281.
    [25] SRACEK O, WANKE H, NDAKUNDA N N, et al. Geochemistry and fluoride levels of geothermal springs in Namibia[J]. Journal of Geochemical Exploration, 2015, 148:96-104.
    [26] WANG Y X, SHVARTSEV S, SU C L. Genesis of arsenic/fluoride-enriched soda water:A case study at Datong,northern China[J]. Applied Geochemistry, 2009, 24(4):641-649.
    [27] 姜凌. 干旱区绿洲地下水水化学成分形成及演化机制研究[D]. 西安:长安大学, 2009. JIANG L. Study on hydrochemical composition formation and evolution mechanisms of the groundwater in oasis of arid areas-A case of yaoba oasis in alashan[D]. Xi'an:Chang' an University, 2009(in Chinese).
    [28] 乌丽罕. 衡水地区高氟地下水化学特征及其成因[D]. 北京:中国地质大学, 2015. WU L H. Characteristics and genesis of high-fluoride groundwater in Hengshui City, the North China Plain[D]. Beijing:China University of Geosciences, 2015(in Chinese).
    [29] 肖国强, 杨吉龙, 胡云壮, 等. 秦皇岛洋-戴河滨海平原海水入侵过程水文化学识别[J]. 安全与环境工程, 2014, 21(2):32-39.

    XIAO G Q, YANG J L, HU Y Z, et al. Hydrogeochemical recognition of seawater intrusion process in Yang River and Dai River coastal plain of Qinhuangdao City[J]. Safety an Environmental Engineering, 2014(2):32-39(in Chinese).

    [30] ZHU G F, SU Y H, HUANG C L, et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China[J]. Environmental Earth Sciences, 2010, 60(1):139-153.
  • 加载中
计量
  • 文章访问数:  1576
  • HTML全文浏览数:  1565
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-23
  • 刊出日期:  2019-05-15
欧浩, 卢国平, 胡晓农, 王贝贝. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
引用本文: 欧浩, 卢国平, 胡晓农, 王贝贝. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
OU Hao, LU Guoping, HU Xiaonong, WANG Beibei. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303
Citation: OU Hao, LU Guoping, HU Xiaonong, WANG Beibei. Fluoride enrichment in geothermal waters in Xinyi-Lianjiang region,Guangdong[J]. Environmental Chemistry, 2019, 38(5): 1128-1138. doi: 10.7524/j.issn.0254-6108.2018092303

广东省信宜-廉江地区地热水中氟的富集过程

  • 1.  暨南大学生命科学技术学院, 广州, 510220;
  • 2.  暨南大学地下水与地球科学研究院, 广州, 510220
基金项目:

国家自然科学基金(41572241)资助.

摘要: 为查明信宜-廉江地区地热水中氟的富集过程,于2018年4月采集地热水、河水和井水样品23组,采用Piper三线图、Gibbs图和同位素分析来探究高氟地热水的化学特征和分布规律,结合饱和指数、离子比例系数和相关性分析等方法揭示了高氟地热水的富集过程.结果显示,超过65%样品F-含量大于1 mg·L-1,热水样品中超过83%的样品F-含量大于1 mg·L-1,高氟水的水化学类型主要为HCO3-Na型,高氟水表现出富钠、贫钙、弱碱性的特点;氢氧同位素数据表明地热水主要来源于大气降水,高氟水循环路径相对较长;水岩作用和含氟矿物的溶解是地热水中氟的主要来源,含钙矿物的溶解沉淀,吸附解吸作用和阳离子交换作用是地热水氟富集的主要影响因素.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回