磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响

陈铨乐, 卢思敏, 何良英, 孙悦宏, 王艺纯, 吴亨宇, 陈姿言, 冯钰瑶, 钱霞, 刘有胜, 应光国. 磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响[J]. 生态毒理学报, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
引用本文: 陈铨乐, 卢思敏, 何良英, 孙悦宏, 王艺纯, 吴亨宇, 陈姿言, 冯钰瑶, 钱霞, 刘有胜, 应光国. 磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响[J]. 生态毒理学报, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
Chen Quanle, Lu Simin, He Liangying, Sun Yuehong, Wang Yichun, Wu Hengyu, Chen Ziyan, Feng Yuyao, Qian Xia, Liu Yousheng, Ying Guangguo. Differential Effects of Sulfadiazine and Tylosin on Nitrification of Swine Wastewater[J]. Asian journal of ecotoxicology, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
Citation: Chen Quanle, Lu Simin, He Liangying, Sun Yuehong, Wang Yichun, Wu Hengyu, Chen Ziyan, Feng Yuyao, Qian Xia, Liu Yousheng, Ying Guangguo. Differential Effects of Sulfadiazine and Tylosin on Nitrification of Swine Wastewater[J]. Asian journal of ecotoxicology, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001

磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响

    作者简介: 陈铨乐(1998—),男,硕士研究生,研究方向为新污染物的环境效应,E-mail: 2020024137@m.scnu.edu.cn
    通讯作者: 何良英, E-mail: liangyin.he@m.scnu.edu.cn 刘有胜, E-mail: yousheng.liu@m.scnu.edu.cn
  • 基金项目:

    科技部重点研发课题(2020YFC1806904)

  • 中图分类号: X171.5

Differential Effects of Sulfadiazine and Tylosin on Nitrification of Swine Wastewater

    Corresponding authors: He Liangying, liangyin.he@m.scnu.edu.cn ;  Liu Yousheng, yousheng.liu@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 养猪废水中高残留抗生素会对废水处理系统中的微生物功能产生影响,而由微生物主导的硝化作用是养猪废水脱氮首要环节。为解析抗生素对养猪废水处理系统中硝化反应的影响机制,选取磺胺嘧啶(SDZ)和泰乐菌素(TYL)为代表性抗生素,对比研究了2种典型抗生素不同暴露水平下养猪废水好氧污泥体系氨氧化和硝化反应的变化规律,并结合扩增子测序分析了2种抗生素对硝化反应功能微生物的影响差异。结果表明,在环境浓度下(100~1 000 μg·L-1)SDZ和TYL对体系氨氧化速率均具有显著抑制作用且与抗生素暴露浓度正相关,1 000 μg·L-1浓度抗生素试验组中氨氮去除率最高分别下降72%和65%,同时显著降低了体系中微生物丰富度和多样性,抗生素作用时间的影响大于浓度的影响。相比TYL,SDZ对细菌和氨氧化功能菌群结构产生显著影响。SDZ主要显著抑制了亚硝化单胞菌目(Nitrosomonadales)、亚硝化单胞菌科(Nitrosomonadaceae)和亚硝化单胞菌属(Nitrosomonas)等硝化功能菌群。本研究结果为揭示抗生素的环境效应提供基础数据。
  • 加载中
  • 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021: 203-213 National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021: 203

    -213(in Chinese)

    Liu S, Li J H, Xu S, et al. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature[J]. Bioresource Technology, 2019, 282: 48-55
    国家环境保护总局. 畜禽养殖业污染物排放标准: GB 18596—2001[S]. 北京: 中国标准出版社, 2001:5-8
    严祝东. 规模化畜禽养殖废水处理技术现状探析[J]. 中国畜牧业, 2022(16): 83-84
    Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95: 604-612
    Zhao X, Shen J P, Shu C L, et al. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system[J]. The Science of the Total Environment, 2022, 807(Pt 1): 150781
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
    Ma Z, Wu H H, Zhang K S, et al. Long-term low dissolved oxygen accelerates the removal of antibiotics and antibiotic resistance genes in swine wastewater treatment[J]. Chemical Engineering Journal, 2018, 334: 630-637
    Cheng D L, Hao Ngo H, Guo W S, et al. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review[J]. Bioresource Technology, 2020, 299: 122654
    Ben W W, Wang J, Pan X, et al. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China[J]. Chemosphere, 2017, 167: 262-268
    王荣昌, 王超颖, 曾旭. 污水处理过程中抗生素抗性基因的检测及其水平转移机制的研究进展[J]. 环境化学, 2017, 36(12): 2567-2573

    Wang R C, Wang C Y, Zeng X. Detection and horizontal transfer of antibiotic resistance genes during wastewater treatment processes[J]. Environmental Chemistry, 2017, 36(12): 2567-2573(in Chinese)

    施胜利, 侯勇, 王新锋. 我国畜禽养殖废水处理模式的研究进展[J]. 黑龙江畜牧兽医, 2021(21): 29-35 Shi S L, Hou Y, Wang X F. Research progress on treatment mode of livestock and poultry wastewater in China[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021

    (21): 29-35(in Chinese)

    Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. The Science of the Total Environment, 2009, 407(8): 2711-2723
    Wang N, Gao J, Wang Q Y, et al. Antimicrobial peptide antibiotics inhibit aerobic denitrification via affecting electron transportation and remolding carbon metabolism[J]. Journal of Hazardous Materials, 2022, 431: 128616
    卿叶, 李红芳, 张苗苗, 等. 养猪废水中磺胺嘧啶对湿地底泥中氮转化微生物及过程影响[J]. 环境科学研究, 2021, 34(9): 2191-2199

    Qing Y, Li H F, Zhang M M, et al. Effects of sulfadiazine in swine wastewater on microorganisms and nitrogen transformation processes in wetland sediment[J]. Research of Environmental Sciences, 2021, 34(9): 2191-2199(in Chinese)

    Katipoglu-Yazan T, Merlin C, Pons M N, et al. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture[J]. Water Research, 2016, 100: 546-555
    Katipoglu-Yazan T, Merlin C, Pons M N, et al. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture[J]. Water Research, 2015, 72: 227-238
    Xu H, Liu B H, Qi W Y, et al. Combined impact of TiO2 nanoparticles and antibiotics on the activity and bacterial community of partial nitrification system[J]. PLoS One, 2021, 16(11): e0259671
    Zhang K Y, Gu J, Wang X J, et al. Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic[J]. Bioresource Technology, 2019, 291: 121803
    Chen C, Li Y, Yin G Y, et al. Antibiotics sulfamethoxazole alter nitrous oxide production and pathways in estuarine sediments: Evidenced by the N15-O18 isotopes tracing[J]. Journal of Hazardous Materials, 2022, 437: 129281
    Jiang X M, Wang H, Wu P K, et al. Nitrification performance evaluation of activated sludge under high potassium ion stress during high-ammonia nitrogen organic wastewater treatment[J]. Journal of Environmental Sciences (China), 2022, 111: 84-92
    Holt J G, Krieg N R, Sneat P, et al. Bergey's Manual of Determinative Bacteriology[M]. Baltimore: Williams and Wilkins, 1994: 8-15
    张敏, 廖明军, 李大鹏, 等. 三种抗生素对池塘底泥氨氧化微生物生长及硝化作用的影响[J]. 渔业现代化, 2013, 40(3): 25-30

    , 36 Zhang M, Liao M J, Li D P, et al. Effects of three kinds of antibiotic on the nitrification and the growth of ammonia-oxidizing microorganism in freshwater aquaculture pond sediment[J]. Fishery Modernization, 2013, 40(3): 25-30, 36(in Chinese)

    Tian Y J, Li J Z, Fan Y Y, et al. Performance and nitrogen removal mechanism in a novel aerobic-microaerobic combined process treating manure-free piggery wastewater[J]. Bioresource Technology, 2022, 345: 126494
    Christoforidou S, Karageorgou E, Ioannidou M, et al. Detection of antibacterial residues in milk by HPLC-DAD and microbial inhibitor tests[J]. Czech Journal of Food Sciences, 2020, 38(1): 63-71
    Wang K, Yu S P, Zhou J. HPLC-based quantitative detection of tylosin in soil[J]. IOP Conference Series Earth and Environmental Science, 2021, 657: 012035
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 93-98
    Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2015, 1(1): e00009-e00015
    Sampson T R, Debelius J W, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease[J]. Cell, 2016, 167(6): 1469-1480.e12
    Mao Y J, Yannarell A C, Mackie R I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops[J]. PLoS One, 2011, 6(9): e24750
    Bolyen E, Rideout J R, Dillon M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857
    Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890
    Callahan B J, McMurdie P J, Rosen M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583
    Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267
    Fish J A, Chai B L, Wang Q, et al. FunGene: The functional gene pipeline and repository[J]. Frontiers in Microbiology, 2013, 4: 291
    赵美玲. 磺胺甲恶唑对强化生物除磷系统的影响研究[D]. 天津: 天津大学, 2012: 3
    Fu L, Huang T, Wang S, et al. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action[J]. Chemosphere, 2017, 168: 217-222
    Halling-Sørensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 451-460
    尹晖, 王亦琳, 叶妮, 等. UPLC-MS/MS法检测禽蛋中10种大环内酯类药物多残留的研究[J]. 中国兽医杂志, 2020, 56(8): 77-83

    Yin H, Wang Y L, Ye N, et al. Determination of macrolides residue in poultry eggs by UPLC-MS/MS[J]. Chinese Journal of Veterinary Medicine, 2020, 56(8): 77-83(in Chinese)

    Guo F, Zhang T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing[J]. Water Research, 2012, 46(8): 2772-2782
  • 加载中
计量
  • 文章访问数:  1665
  • HTML全文浏览数:  1665
  • PDF下载数:  124
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-12
陈铨乐, 卢思敏, 何良英, 孙悦宏, 王艺纯, 吴亨宇, 陈姿言, 冯钰瑶, 钱霞, 刘有胜, 应光国. 磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响[J]. 生态毒理学报, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
引用本文: 陈铨乐, 卢思敏, 何良英, 孙悦宏, 王艺纯, 吴亨宇, 陈姿言, 冯钰瑶, 钱霞, 刘有胜, 应光国. 磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响[J]. 生态毒理学报, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
Chen Quanle, Lu Simin, He Liangying, Sun Yuehong, Wang Yichun, Wu Hengyu, Chen Ziyan, Feng Yuyao, Qian Xia, Liu Yousheng, Ying Guangguo. Differential Effects of Sulfadiazine and Tylosin on Nitrification of Swine Wastewater[J]. Asian journal of ecotoxicology, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001
Citation: Chen Quanle, Lu Simin, He Liangying, Sun Yuehong, Wang Yichun, Wu Hengyu, Chen Ziyan, Feng Yuyao, Qian Xia, Liu Yousheng, Ying Guangguo. Differential Effects of Sulfadiazine and Tylosin on Nitrification of Swine Wastewater[J]. Asian journal of ecotoxicology, 2023, 18(2): 286-296. doi: 10.7524/AJE.1673-5897.20221212001

磺胺嘧啶和泰乐菌素对养猪废水硝化作用的差异性影响

    通讯作者: 何良英, E-mail: liangyin.he@m.scnu.edu.cn ;  刘有胜, E-mail: yousheng.liu@m.scnu.edu.cn
    作者简介: 陈铨乐(1998—),男,硕士研究生,研究方向为新污染物的环境效应,E-mail: 2020024137@m.scnu.edu.cn
  • 1. 华南师范大学环境学院, 广州 510006;
  • 2. 华南师范大学广东省化学品污染与环境安全重点试验室, 环境理论化学教育部重点试验室, 广州 510006
基金项目:

科技部重点研发课题(2020YFC1806904)

摘要: 养猪废水中高残留抗生素会对废水处理系统中的微生物功能产生影响,而由微生物主导的硝化作用是养猪废水脱氮首要环节。为解析抗生素对养猪废水处理系统中硝化反应的影响机制,选取磺胺嘧啶(SDZ)和泰乐菌素(TYL)为代表性抗生素,对比研究了2种典型抗生素不同暴露水平下养猪废水好氧污泥体系氨氧化和硝化反应的变化规律,并结合扩增子测序分析了2种抗生素对硝化反应功能微生物的影响差异。结果表明,在环境浓度下(100~1 000 μg·L-1)SDZ和TYL对体系氨氧化速率均具有显著抑制作用且与抗生素暴露浓度正相关,1 000 μg·L-1浓度抗生素试验组中氨氮去除率最高分别下降72%和65%,同时显著降低了体系中微生物丰富度和多样性,抗生素作用时间的影响大于浓度的影响。相比TYL,SDZ对细菌和氨氧化功能菌群结构产生显著影响。SDZ主要显著抑制了亚硝化单胞菌目(Nitrosomonadales)、亚硝化单胞菌科(Nitrosomonadaceae)和亚硝化单胞菌属(Nitrosomonas)等硝化功能菌群。本研究结果为揭示抗生素的环境效应提供基础数据。

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回