三角褐指藻对环丙沙星的去除过程及影响因素

姜现静, 吕剑, 武君, 王建华, 张翠. 三角褐指藻对环丙沙星的去除过程及影响因素[J]. 生态毒理学报, 2022, 17(4): 523-532. doi: 10.7524/AJE.1673-5897.20211229003
引用本文: 姜现静, 吕剑, 武君, 王建华, 张翠. 三角褐指藻对环丙沙星的去除过程及影响因素[J]. 生态毒理学报, 2022, 17(4): 523-532. doi: 10.7524/AJE.1673-5897.20211229003
Jiang Xianjing, Lu Jian, Wu Jun, Wang Jianhua, Zhang Cui. Removal Process of Ciprofloxacin by Phaeodactylum tricornutum and Its Influencing Factors[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 523-532. doi: 10.7524/AJE.1673-5897.20211229003
Citation: Jiang Xianjing, Lu Jian, Wu Jun, Wang Jianhua, Zhang Cui. Removal Process of Ciprofloxacin by Phaeodactylum tricornutum and Its Influencing Factors[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 523-532. doi: 10.7524/AJE.1673-5897.20211229003

三角褐指藻对环丙沙星的去除过程及影响因素

    作者简介: 姜现静(1997—),女,硕士研究生,研究方向为水污染控制,E-mail:jiangxianjing19@mails.ucas.ac.cn
    通讯作者: 吕剑, E-mail: jlu@yic.ac.cn
  • 基金项目:

    国家自然科学基金面上项目(41877131);泰山学者工程专项(tsqn201812116);中国科学院科技服务网络计划(STS计划)区域重点项目(KFJ-STS-QYZX-114)

  • 中图分类号: X171.5

Removal Process of Ciprofloxacin by Phaeodactylum tricornutum and Its Influencing Factors

    Corresponding author: Lu Jian, jlu@yic.ac.cn
  • Fund Project:
  • 摘要: 我国沿海水域面临严峻的抗生素污染问题,威胁生态平衡和人类健康。微藻在抗生素污水治理领域具有广阔的应用前景。本文选取海水养殖常用的三角褐指藻,以环丙沙星(ciprofloxacin,CIP)为目标污染物,研究了三角褐指藻对CIP的去除动力学规律。并进一步探究了pH、光照、盐度和抗生素浓度对去除效率的影响。当CIP初始浓度为600 μg·L-1时,90 d内三角褐指藻能去除60.0%的CIP,该过程符合一级动力学模型,分别在pH为5.5、33%光照强度、10‰盐度条件下得到最佳去除率,而且去除率与抗生素初始浓度呈负相关关系。三角褐指藻对CIP表现出良好的耐受性,为微藻在海洋抗生素污染治理领域的应用提供参考。
  • 加载中
  • 吕剑, 骆永明, 章海波. 中国海岸带污染问题与防治措施[J]. 中国科学院院刊, 2016, 31(10):1175-1181

    Lv J, Luo Y M, Zhang H B. Coastal zone pollution and its prevention and treatment measures in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1175-1181(in Chinese)

    包樱钰, 李菲菲, 温东辉. 我国海水养殖业的抗生素污染现状[J]. 海洋环境科学, 2021, 40(2):294-302

    Bao Y Y, Li F F, Wen D H. Antibiotic contamination in mariculture in China[J]. Marine Environmental Science, 2021, 40(2):294-302(in Chinese)

    Lu J, Wu J, Zhang C, et al. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China[J]. Science of the Total Environment, 2018, 644:1469-1476
    Kumar M, Jaiswal S, Sodhi K K, et al. Antibiotics bioremediation:Perspectives on its ecotoxicity and resistance[J]. Environment International, 2019, 124:448-461
    Ao X W, Liu W J, Sun W J, et al. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation:Kinetics, mechanism, and genotoxicity[J]. Chemical Engineering Journal, 2018, 345:87-97
    Xiong Q, Liu Y S, Hu L X, et al. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa[J]. Water Research, 2020, 175:115656
    Xiong J Q, Kurade M B, Jeon B H. Can microalgae remove pharmaceutical contaminants from water?[J]. Trends in Biotechnology, 2018, 36(1):30-44
    Shi X Q, Yeap T S, Huang S J, et al. Pretreatment of saline antibiotic wastewater using marine microalga[J]. Bioresource Technology, 2018, 258:240-246
    Chen F F, Xiao Y, Wu X W, et al. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture[J]. RSC Advances, 2020, 10(35):20794-20800
    Patel A K, Choi Y Y, Sim S J. Emerging prospects of mixotrophic microalgae:Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels[J]. Bioresource Technology, 2020, 300:122741
    Xiong J Q, Kurade M B, Jeon B H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering Journal, 2017, 313:1251-1257
    Song C F, Wei Y L, Qiu Y T, et al. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38:Experimental study[J]. Bioresource Technology, 2019, 272:529-534
    王桂祥, 张琼, 匡少平, 等. 环境浓度下的混合抗生素对普通小球藻的联合毒性[J]. 生态毒理学报, 2019, 14(2):122-128

    Wang G X, Zhang Q, Kuang S P, et al. The joint toxicity of mixed antibiotics on Chlorella vulgaris at normal environmental concentration[J]. Asian Journal of Ecotoxicology, 2019, 14(2):122-128(in Chinese)

    Xiong J Q, Kurade M B, Kim J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323:212-219
    Xie P, Chen C, Zhang C F, et al. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae[J]. Water Research, 2020, 172:115475
    Jiang H M, Gao K S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) 1[J]. Journal of Phycology, 2004, 40(4):651-654
    潘瑾, 俞建中, 马晓磊, 等. 温度影响三角褐指藻生长和脂肪酸组成的初步探讨[J]. 渔业科学进展, 2010, 31(6):90-94

    Pan J, Yu J Z, Ma X L, et al. Effect of temperature on the growth and fatty acid composition of Phaeodactylum tricornutum[J]. Progress in Fishery Sciences, 2010, 31(6):90-94(in Chinese)

    洪喻, 郝立翀, 陈足音. 新兴污染物对微藻的毒性作用与机制研究进展[J]. 生态毒理学报, 2019, 14(5):22-45

    Hong Y, Hao L C, Chen Z Y. Research progress on the toxic effects of emerging pollutants on microalgae and the mechanisms[J]. Asian Journal of Ecotoxicology, 2019, 14(5):22-45(in Chinese)

    孟磊, 杨兵, 薛南冬. 氟喹诺酮类抗生素环境行为及其生态毒理研究进展[J]. 生态毒理学报, 2015, 10(2):76-88

    Meng L, Yang B, Xue N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics[J]. Asian Journal of Ecotoxicology, 2015, 10(2):76-88(in Chinese)

    邹高龙, 刘志文, 董洁平, 等. 环丙沙星在污水处理过程中的迁移转化及对污水生物处理的影响[J]. 环境科学学报, 2019, 39(2):308-317

    Zou G L, Liu Z W, Dong J P, et al. The transformation of ciprofloxacin in wastewater treatment and its impact on wastewater treatment[J]. Acta Scientiae Circumstantiae, 2019, 39(2):308-317(in Chinese)

    Guillard R. Culture of Phytoplankton for Feeding Marine Invertebrates[M]//Smith W L, Chanley M H. Culture of Marine Invertebrate Animals. New York:Plenum Press, 1975:29-60
    Amorim C L, Moreira I S, Maia A S, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Applied Microbiology and Biotechnology, 2014, 98(7):3181-3190
    Bai X L, Acharya K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water[J]. The Science of the Total Environment, 2017, 581-582:734-740
    李霞, 陈菊芳, 聂湘平, 等. 盐酸环丙沙星在不同模拟水体中的降解与残留[J]. 中山大学学报:自然科学版, 2010, 49(3):102-106

    Li X, Chen J F, Nie X P, et al. Degradation and residue of ciprofloxacin in different simulated water bodies[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3):102-106(in Chinese)

    朱小燕, 傅大放, 邓琳, 等. 小球藻引发水中环丙沙星的光降解效能研究[J]. 中国环境科学, 2013, 33(4):663-668

    Zhu X Y, Fu D F, Deng L, et al. Efficiency of ciprofloxacin photodegradation induced by chlorella in aqueous solutions[J]. China Environmental Science, 2013, 33(4):663-668(in Chinese)

    Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science & Technology, 2013, 47(9):4284-4290
    Chen Q H, Zhang L, Han Y H, et al. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems[J]. Environmental Science and Pollution Research, 2020, 27(22):28198-28208
    Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater:A review[J]. Chemosphere, 2020, 238:124680
    Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12):2874-2890
    Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin[J]. International Journal of Pharmaceutics, 1996, 132(1-2):53-61
    Salma A, Thoröe-Boveleth S, Schmidt T C, et al. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin[J]. Journal of Hazardous Materials, 2016, 313:49-59
    Tran N A T, Seymour J R, Siboni N, et al. Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata[J]. Algal Research, 2017, 26:302-311
    Wu Y, Gao K, Riebesell U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(73):2915-2923
    Bitaubé Pérez E, Caro Pina I, Pérez Rodríguez L. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor[J]. Biochemical Engineering Journal, 2008, 40(3):520-525
    叶丽, 蒋霞敏, 毛欣欣, 等. 温、光、盐对三角褐指藻紫外诱变株生长、总脂及脂肪酸的影响[J]. 生态学杂志, 2015, 34(2):454-462

    Ye L, Jiang X M, Mao X X, et al. Effects of temperature, light intensity and salinity on the growth, total lipid and fatty acid of Phaeodactylum tricornutum mutant[J]. Chinese Journal of Ecology, 2015, 34(2):454-462(in Chinese)

    Lepetit B, Gélin G, Lepetit M, et al. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis[J]. The New Phytologist, 2017, 214(1):205-218
    Geider R J, Osbonie B A, Raven J A. Growth, photosynthesis and maintenance metabolic cost in the diatom Phaeodactylum tricornutum at very low light levels 1[J]. Journal of Phycology, 1986, 22(1):39-48
    Nur M M A, Muizelaar W, Boelen P, et al. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent[J]. Journal of Applied Phycology, 2019, 31(1):111-122
    连鹏, 葛利云, 邓欢欢, 等. 两种喹诺酮类抗生素对亚心形扁藻的毒性效应研究[J]. 环境科学与管理, 2014, 39(5):46-48

    Lian P, Ge L Y, Deng H H, et al. Toxic effects of two quinolone antibiotics on Platymonas subcordiformis[J]. Environmental Science and Management, 2014, 39(5):46-48(in Chinese)

    刘滨扬. 红霉素、环丙沙星和磺胺甲噁唑对羊角月牙藻的毒性效应及其作用机理[D]. 广州:暨南大学, 2011:71 Liu B Y. Toxic effects and its mechanism of erythromycin, ciprofloxacin and sulfamethoxazole to Selenastrum capricornutum[D]. Guangzhou:Jinan University, 2011:71(in Chinese)
  • 加载中
计量
  • 文章访问数:  1038
  • HTML全文浏览数:  1038
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-29

三角褐指藻对环丙沙星的去除过程及影响因素

    通讯作者: 吕剑, E-mail: jlu@yic.ac.cn
    作者简介: 姜现静(1997—),女,硕士研究生,研究方向为水污染控制,E-mail:jiangxianjing19@mails.ucas.ac.cn
  • 1. 中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 烟台 264003;
  • 2. 山东省海岸带环境过程重点实验室, 烟台 264003;
  • 3. 中国科学院大学, 北京 100049;
  • 4. 烟台哈尔滨工程大学研究院, 烟台 264006
基金项目:

国家自然科学基金面上项目(41877131);泰山学者工程专项(tsqn201812116);中国科学院科技服务网络计划(STS计划)区域重点项目(KFJ-STS-QYZX-114)

摘要: 我国沿海水域面临严峻的抗生素污染问题,威胁生态平衡和人类健康。微藻在抗生素污水治理领域具有广阔的应用前景。本文选取海水养殖常用的三角褐指藻,以环丙沙星(ciprofloxacin,CIP)为目标污染物,研究了三角褐指藻对CIP的去除动力学规律。并进一步探究了pH、光照、盐度和抗生素浓度对去除效率的影响。当CIP初始浓度为600 μg·L-1时,90 d内三角褐指藻能去除60.0%的CIP,该过程符合一级动力学模型,分别在pH为5.5、33%光照强度、10‰盐度条件下得到最佳去除率,而且去除率与抗生素初始浓度呈负相关关系。三角褐指藻对CIP表现出良好的耐受性,为微藻在海洋抗生素污染治理领域的应用提供参考。

English Abstract

参考文献 (40)

目录

/

返回文章
返回