氯化石蜡的毒代动力学研究进展

陈双双, 耿柠波, 曹蓉, 高媛, 张海军, 陈吉平. 氯化石蜡的毒代动力学研究进展[J]. 生态毒理学报, 2022, 17(4): 47-58. doi: 10.7524/AJE.1673-5897.20211124002
引用本文: 陈双双, 耿柠波, 曹蓉, 高媛, 张海军, 陈吉平. 氯化石蜡的毒代动力学研究进展[J]. 生态毒理学报, 2022, 17(4): 47-58. doi: 10.7524/AJE.1673-5897.20211124002
Chen Shuangshuang, Geng Ningbo, Cao Rong, Gao Yuan, Zhang Haijun, Chen Jiping. Toxicokinetics of Chlorinated Paraffin: A Review[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 47-58. doi: 10.7524/AJE.1673-5897.20211124002
Citation: Chen Shuangshuang, Geng Ningbo, Cao Rong, Gao Yuan, Zhang Haijun, Chen Jiping. Toxicokinetics of Chlorinated Paraffin: A Review[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 47-58. doi: 10.7524/AJE.1673-5897.20211124002

氯化石蜡的毒代动力学研究进展

    作者简介: 陈双双(1999—),女,硕士研究生,研究方向为环境毒理学,E-mail:chen_shuangshuang@dlmu.edu.cn
    通讯作者: 耿柠波, E-mail: gengningbo@dicp.ac.cn
  • 基金项目:

    国家自然科学基金面上项目(22076183,21976174,22276189)

  • 中图分类号: X171.5

Toxicokinetics of Chlorinated Paraffin: A Review

    Corresponding author: Geng Ningbo, gengningbo@dicp.ac.cn
  • Fund Project:
  • 摘要: 氯化石蜡(chlorinated paraffins,CPs)是一类氯代烷烃混合物,其在不同环境基质甚至人体中被普遍检出,对生态系统和人体健康构成了潜在危害,受到人们的广泛关注。本文系统总结了国内外CPs毒代动力学的相关研究,阐述了CPs在生物体内的吸收、分布、代谢和排泄过程,以及经生物转化的代谢降解途径。重点阐明了CPs在水生、两栖和爬行生物体内的生物富集和生物放大潜能,在两栖、爬行、哺乳和鸟类动物中的母体转移过程,以及在动植物和微生物中的代谢途径及其代谢产物。最后提出了3个亟需探究的方向:开展系统的短链氯化石蜡替代品安全性评价,基于先进的分析技术全面探究CPs在生物体内的代谢过程,开展低剂量CPs暴露的母婴转移途径和健康风险评估,以期为CPs相关领域的研究者提供参考。
  • 加载中
  • Fridén U E, McLachlan M S, Berger U. Chlorinated paraffins in indoor air and dust:Concentrations, congener patterns, and human exposure[J]. Environment International, 2011, 37(7):1169-1174
    Liu Y, Luo X J, Zeng Y H, et al. Trophic magnification of short- and medium-chain chlorinated paraffins in terrestrial food webs and their bioamplification in insects and amphibians during metamorphosis[J]. Environmental Science & Technology, 2020, 54(18):11282-11291
    Zeng L X, Wang T, Wang P, et al. Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant[J]. Environmental Science & Technology, 2011, 45(13):5529-5535
    Huang Y M, Chen L G, Feng Y B, et al. Short-chain chlorinated paraffins in the soils of two different Chinese Cities:Occurrence, homologue patterns and vertical migration[J]. Science of the Total Environment, 2016, 557-558:644-651
    Sun R X, Luo X J, Tang B, et al. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China:Residue levels and interspecies differences[J]. Science of the Total Environment, 2016, 553:196-203
    Thomas G O, Farrar D, Braekevelt E, et al. Short and medium chain length chlorinated paraffins in UK human milk fat[J]. Environment International, 2006, 32(1):34-40
    Zeng L X, Chen R, Zhao Z S, et al. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas[J]. Environmental Science & Technology, 2013, 47(20):11449-11456
    Ma X D, Zhang H J, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10):5964-5971
    Li H J, Fu J J, Zhang A Q, et al. Occurrence, bioaccumulation and long-range transport of short-chain chlorinated paraffins on the Fildes Peninsula at King George Island, Antarctica[J]. Environment International, 2016, 94:408-414
    Geng N B, Zhang H J, Zhang B Q, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5):3076-3083
    United Nations Environment Programme (UNEP). Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of its eighth meeting[EB/OL]. (2017-05-05)[2021-11-20]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
    de Wit C A, Bossi R, Dietz R, et al. Organohalogen compounds of emerging concern in Baltic Sea biota:Levels, biomagnification potential and comparisons with legacy contaminants[J]. Environment International, 2020, 144:106037
    嘉兴市皮毛和制鞋工业研究所. 皮革和毛皮氯代烃的测定第2部分:中链氯化石蜡[EB/OL]. (2022-07-05

    )[2022-09-02]. https://std.samr.gov.cn/gb/search/gbDetailed?id=DAF0BE8AFFD68B27E05397BE0A0A3E7E

    Yuan B, Vorkamp K, Roos A M, et al. Accumulation of short-, medium-, and long-chain chlorinated paraffins in marine and terrestrial animals from Scandinavia[J]. Environmental Science & Technology, 2019, 53(7):3526-3537
    Zeng L X, Lam J C W, Chen H, et al. Tracking dietary sources of short- and medium-chain chlorinated paraffins in marine mammals through a subtropical marine food web[J]. Environmental Science & Technology, 2017, 51(17):9543-9552
    Li H J, Bu D, Fu J J, et al. Trophic dilution of short-chain chlorinated paraffins in a plant-plateau pika-eagle food chain from the Tibetan Plateau[J]. Environmental Science & Technology, 2019, 53(16):9472-9480
    Wang X T, Jia H H, Hu B P, et al. Occurrence, sources, partitioning and ecological risk of short- and medium-chain chlorinated paraffins in river water and sediments in Shanghai[J]. Science of the Total Environment, 2019, 653:475-484
    Moore S, Vromet L, Rondeau B. Comparison of metastable atom bombardment and electron capture negative ionization for the analysis of polychloroalkanes[J]. Chemosphere, 2004, 54(4):453-459
    Castells P, Santos F J, Galceran M T. Solid-phase extraction versus solid-phase microextraction for the determination of chlorinated paraffins in water using gas chromatography-negative chemical ionisation mass spectrometry[J]. Journal of Chromatography A, 2004, 1025(2):157-162
    Li H J, Fu J J, Pan W X, et al. Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial ecosystems of Ny-Ålesund and London Island, Svalbard, in the Arctic[J]. Science of the Total Environment, 2017, 590-591:163-170
    Huang Y M, Chen L G, Jiang G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. Science of the Total Environment, 2019, 671:262-269
    Castro M, Sobek A, Yuan B, et al. Bioaccumulation potential of CPs in aquatic organisms:Uptake and depuration in Daphnia magna[J]. Environmental Science & Technology, 2019, 53(16):9533-9541
    Houde M, Muir D C G, Tomy G T, et al. Bioaccumulation and trophic magnification of short- and medium-chain chlorinated paraffins in food webs from Lake Ontario and Lake Michigan[J]. Environmental Science & Technology, 2008, 42(10):3893-3899
    Gobas F A P C. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs:Application to Lake Ontario[J]. Ecological Modelling, 1993, 69(1-2):1-17
    Sun R X, Luo X J, Tang B, et al. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in South China:Bioaccumulation factors, tissue distribution, and trophic transfer[J]. Environmental Pollution, 2017, 222:165-174
    Guan K L, Liu Y, Luo X J, et al. Short- and medium-chain chlorinated paraffins in aquatic organisms from an e-waste site:Biomagnification and maternal transfer[J]. Science of the Total Environment, 2020, 708:134840
    Du X Y, Yuan B, Zhou Y H, et al. Chlorinated paraffins in two snake species from the Yangtze River Delta:Tissue distribution and biomagnification[J]. Environmental Science & Technology, 2020, 54(5):2753-2762
    Du X Y, Yuan B, Zhou Y H, et al. Tissue-specific accumulation, sexual difference, and maternal transfer of chlorinated paraffins in black-spotted frogs[J]. Environmental Science & Technology, 2019, 53(9):4739-4746
    Zeng L X, Lam J C W, Wang Y W, et al. Temporal trends and pattern changes of short- and medium-chain chlorinated paraffins in marine mammals from the South China Sea over the past decade[J]. Environmental Science & Technology, 2015, 49(19):11348-11355
    Aamir M, Yin S S, Guo F J, et al. Congener-specific mother-fetus distribution, placental retention, and transport of C10-13 and C14-17 chlorinated paraffins in pregnant women[J]. Environmental Science & Technology, 2019, 53(19):11458-11466
    Qiao L, Gao L R, Zheng M H, et al. Mass fractions, congener group patterns, and placental transfer of short- and medium-chain chlorinated paraffins in paired maternal and cord serum[J]. Environmental Science & Technology, 2018, 52(17):10097-10103
    Chen H, Zhou W, Lam J C W, et al. Blood partitioning and whole-blood-based maternal transfer assessment of chlorinated paraffins in mother-infant pairs from South China[J]. Environment International, 2020, 142:105871
    Liu Y X, Aamir M, Li M Y, et al. Prenatal and postnatal exposure risk assessment of chlorinated paraffins in mothers and neonates:Occurrence, congener profile, and transfer behavior[J]. Journal of Hazardous Materials, 2020, 395:122660
    Wang Y, Gao W, Wang Y W, et al. Distribution and pattern profiles of chlorinated paraffins in human placenta of Henan Province, China[J]. Environmental Science & Technology, 2018, 5(1):9-13
    Myllynen P, Vähäkangas K. Placental transfer and metabolism:An overview of the experimental models utilizing human placental tissue[J]. Toxicology in Vitro, 2013, 27(1):507-512
    Zhang X L, Cheng X M, Lei B L, et al. A review of the transplacental transfer of persistent halogenated organic pollutants:Transfer characteristics, influential factors, and mechanisms[J]. Environment International, 2021, 146:106224
    Geng N B, Zhang H J, Xing L G, et al. Toxicokinetics of short-chain chlorinated paraffins in Sprague-Dawley rats following single oral administration[J]. Chemosphere, 2016, 145:106-111
    Darnerud P O, Biessmann A, Brandt I. Metabolic fate of chlorinated paraffins:Degree of chlorination of[1-14C] -chlorododecanes in relation to degradation and excretion in mice[J]. Archives of Toxicology, 1982, 50(3-4):217-226
    Biessmann A, Darnerud P O, Brandt I. Chlorinated paraffins:Disposition of a highly chlorinated polychlorohexadecane in mice and quail[J]. Archives of Toxicology, 1983, 53(1):79-86
    Campbell E S, Richter W. An observational method estimating toxicity and drug actions in mice applied to 68 reference drugs[J]. Acta Pharmacologica et Toxicologica, 1967, 25(3):345-363
    Eriksson P, Kihlström J E. Disturbance of motor performance and thermoregulation in mice given two commercial chlorinated paraffins[J]. Bulletin of Environmental Contamination and Toxicology, 1985, 34(2):205-209
    Ueberschär K H, Dänicke S, Matthes S. Dose-response feeding study of short chain chlorinated paraffins (SCCPs) in laying hens:Effects on laying performance and tissue distribution, accumulation and elimination kinetics[J]. Molecular Nutrition & Food Research, 2007, 51(2):248-254
    Ueberschär K H, Matthes S. Dose-response feeding study of chlorinated paraffins in broiler chickens:Effects on growth rate and tissue distribution[J]. Food Additives & Contaminants, 2004, 21(10):943-948
    Mézière M, Marchand P, Hutinet S, et al. Transfer of short-, medium-, and long-chain chlorinated paraffins to eggs of laying hens after dietary exposure[J]. Food Chemistry, 2021, 343:128491
    Huang X M, Cui Z F, Ding C H, et al. Differential accumulation of short-, medium-, and long-chain chlorinated paraffin in free-range laying hens from an E-waste recycling area[J]. Journal of Agricultural and Food Chemistry, 2021, 69(35):10329-10337
    Li Y L, Hou X W, Chen W F, et al. Carbon chain decomposition of short chain chlorinated paraffins mediated by pumpkin and soybean seedlings[J]. Environmental Science & Technology, 2019, 53(12):6765-6772
    Li Y L, Hou X W, Yu M, et al. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings[J]. Environmental Pollution, 2017, 224:524-531
    Dong Z M, Li T, Wan Y, et al. Physiologically based pharmacokinetic modeling for chlorinated paraffins in rats and humans:Importance of biliary excretion[J]. Environmental Science & Technology, 2020, 54(2):938-946
    Fisk A T, Cymbalisty C D, Tomy G T, et al. Dietary accumulation and depuration of individual C10-, C11- and C14-polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 1998, 43(2-3):209-221
    Åhlman M, Bergman Å, Darnerud P O, et al. Chlorinated paraffins:Formation of sulphur-containing metabolites of polychlorohexadecane in rats[J]. Xenobiotica, 1986, 16(3):225-232
    Darnerud P O. Chlorinated paraffins:Effect of some microsomal enzyme inducers and inhibitors on the degradation of 1-14C-chlorododecanes to 14CO2 in mice[J]. Acta Pharmacologica et Toxicologica, 1984, 55(2):110-115
    Wang M, Gao Y P, Li G Y, et al. Increased adverse effects during metabolic transformation of short-chain chlorinated paraffins by cytochrome P450:A theoretical insight into 1-chlorodecane[J]. Journal of Hazardous Materials, 2021, 407:124391
    He C, van Mourik L, Tang S Y, et al. In vitro biotransformation and evaluation of potential transformation products of chlorinated paraffins by high resolution accurate mass spectrometry[J]. Journal of Hazardous Materials, 2021, 405:124245
    Chen W F, Yu M, Zhang Q, et al. Metabolism of SCCPs and MCCPs in suspension rice cells based on paired mass distance (PMD) analysis[J]. Environmental Science & Technology, 2020, 54(16):9990-9999
    Li Y L, Chen W F, Kong W Q, et al. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings[J]. Science of the Total Environment, 2020, 704:135455
    Heeb N V, Schalles S, Lehner S, et al. Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2:A HCH and HBCD converting bacterial dehydrohalogenase[J]. Chemosphere, 2019, 226:744-754
    Knobloch M C, Schinkel L, Schilling I, et al. Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB-Formation of mono- and di-hydroxylated metabolites[J]. Chemosphere, 2021, 262:128288
    Knobloch M C, Schinkel L, Kohler H P E, et al. Transformation of short-chain chlorinated paraffins and olefins with the bacterial dehalogenase LinB from Sphingobium indicum-Kinetic models for the homologue-specific conversion of reactive and persistent material[J]. Chemosphere, 2021, 283:131199
    Knobloch M C, Mathis F, Fleischmann T, et al. Enzymatic synthesis and formation kinetics of mono- and di-hydroxylated chlorinated paraffins with the bacterial dehalogenase LinB from Sphingobium indicum[J]. Chemosphere, 2022, 291:132939
    Xu J Z, Guo W J, Wei L H, et al. Validation of a HRGC-ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma[J]. Journal of Environmental Sciences, 2019, 75:289-295
    Labadie P, Blasi C, Le Menach K, et al. Evidence for the widespread occurrence of short- and medium-chain chlorinated paraffins in fish collected from the Rhône River Basin (France)[J]. Chemosphere, 2019, 223:232-239
    Li T, Wan Y, Gao S X, et al. High-throughput determination and characterization of short-, medium-, and long-chain chlorinated paraffins in human blood[J]. Environmental Science & Technology, 2017, 51(6):3346-3354
    Wang X T, Jia H H, Hu B P, et al. Occurrence, sources, partitioning and ecological risk of short- and medium-chain chlorinated paraffins in river water and sediments in Shanghai[J]. Science of the Total Environment, 2019, 653:475-484
    Glüge J, Schinkel L, Hungerbühler K, et al. Environmental risks of medium-chain chlorinated paraffins (MCCPs):A review[J]. Environmental Science & Technology, 2018, 52(12):6743-6760
  • 加载中
计量
  • 文章访问数:  1256
  • HTML全文浏览数:  1256
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-24

氯化石蜡的毒代动力学研究进展

    通讯作者: 耿柠波, E-mail: gengningbo@dicp.ac.cn
    作者简介: 陈双双(1999—),女,硕士研究生,研究方向为环境毒理学,E-mail:chen_shuangshuang@dlmu.edu.cn
  • 1. 大连海事大学环境科学与工程学院, 大连 116026;
  • 2. 中国科学院大连化学物理研究所, 大连 116023
基金项目:

国家自然科学基金面上项目(22076183,21976174,22276189)

摘要: 氯化石蜡(chlorinated paraffins,CPs)是一类氯代烷烃混合物,其在不同环境基质甚至人体中被普遍检出,对生态系统和人体健康构成了潜在危害,受到人们的广泛关注。本文系统总结了国内外CPs毒代动力学的相关研究,阐述了CPs在生物体内的吸收、分布、代谢和排泄过程,以及经生物转化的代谢降解途径。重点阐明了CPs在水生、两栖和爬行生物体内的生物富集和生物放大潜能,在两栖、爬行、哺乳和鸟类动物中的母体转移过程,以及在动植物和微生物中的代谢途径及其代谢产物。最后提出了3个亟需探究的方向:开展系统的短链氯化石蜡替代品安全性评价,基于先进的分析技术全面探究CPs在生物体内的代谢过程,开展低剂量CPs暴露的母婴转移途径和健康风险评估,以期为CPs相关领域的研究者提供参考。

English Abstract

参考文献 (64)

目录

/

返回文章
返回