纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移

周宏瑞, 杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 160-169. doi: 10.7524/AJE.1673-5897.20211108002
引用本文: 周宏瑞, 杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 160-169. doi: 10.7524/AJE.1673-5897.20211108002
Zhou Hongrui, Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Molybdenum Disulfide Promotes Pheromone-induced Plasmid Mediated Conjugation Transfer of Drug Resistance Genes in Enterococcus faecalis[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 160-169. doi: 10.7524/AJE.1673-5897.20211108002
Citation: Zhou Hongrui, Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Molybdenum Disulfide Promotes Pheromone-induced Plasmid Mediated Conjugation Transfer of Drug Resistance Genes in Enterococcus faecalis[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 160-169. doi: 10.7524/AJE.1673-5897.20211108002

纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移

    作者简介: 周宏瑞(1996-),男,硕士研究生,研究方向为纳米材料生物效应,E-mail:13427569748@163.com
    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
  • 基金项目:

    国家自然科学基金面上项目(42177414,31470234)

  • 中图分类号: X171.5

Molybdenum Disulfide Promotes Pheromone-induced Plasmid Mediated Conjugation Transfer of Drug Resistance Genes in Enterococcus faecalis

    Corresponding author: Qiu Zhigang, zhigangqiu99@gmail.com
  • Fund Project:
  • 摘要: 粪肠球菌是一种通常寄居在人和动物胃肠道中的机会致病菌,并广泛存在于环境中。其可通过基因的水平转移获得抗生素抗性。纳米二硫化钼(molybdenum disulfide,MoS2)是一种新型的二维层状材料,有广泛的应用前景,但缺乏对纳米MoS2完整的生物安全评价。本研究以粪肠球菌为接合模型,将纳米MoS2加入接合体系中研究其对信息素诱导质粒pCF10接合转移的影响。研究发现,纳米MoS2具有促进接合转移的作用,其中25 mg·L-1的纳米MoS2促进效果最明显,可以将接合频率提高5倍~8倍。因为纳米MoS2良好的生物相容性对细胞膜通透性、细胞内活性氧水平和接合转移调控基因的表达都没有产生明显影响。纳米MoS2具有吸附性能,而且又是片层状的结构,这使得其可以附着在细菌表面,促进细菌的聚集,进而促进pCF10质粒接合转移的发生。
  • 加载中
  • Huemer M, Mairpady Shambat S, Brugger S D, et al. Antibiotic resistance and persistence-Implications for human health and treatment perspectives[J]. EMBO Reports, 2020, 21(12):e51034
    Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111
    Karkman A, Do T T, Walsh F, et al. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology, 2018, 26(3):220-228
    Che Y, Xia Y, Liu L, et al. Mobile antibiotic resistome in wastewater treatment plants revealed by nanopore metagenomic sequencing[J]. Microbiome, 2019, 7(1):44
    Thanner S, Drissner D, Walsh F. Antimicrobial resistance in agriculture[J]. mBio, 2016, 7(2):e02227-e02215
    San Millan A. Evolution of plasmid-mediated antibiotic resistance in the clinical context[J]. Trends in Microbiology, 2018, 26(12):978-985
    Huddleston J R. Horizontal gene transfer in the human gastrointestinal tract:Potential spread of antibiotic resistance genes[J]. Infection and Drug Resistance, 2014, 7:167-176
    Furuya E Y, Lowy F D. Antimicrobial-resistant bacteria in the community setting[J]. Nature Reviews Microbiology, 2006, 4(1):36-45
    Pal C, Bengtsson-Palme J, Kristiansson E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16:964
    George R C, Uttley A H. Susceptibility of enterococci and epidemiology of enterococcal infection in the 1980s[J]. Epidemiology and Infection, 1989, 103(3):403-413
    Mundy L M, Sahm D F, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance[J]. Clinical Microbiology Reviews, 2000, 13(4):513-522
    Sievert D M, Ricks P, Edwards J R, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2009-2010[J]. Infection Control&Hospital Epidemiology, 2013, 34(1):1-14
    游选旺,唐毕华,黄健. 214株肠球菌的耐药性分析[J].实验与检验医学, 2009, 27(6):627-628
    Raza T, Ullah S R, Mehmood K, et al. Vancomycin resistant Enterococci:A brief review[J]. Journal of the Pakistan Medical Association, 2018, 68(5):768-772
    Price V J, Huo W W, Sharifi A, et al. CRISPR-cas and restriction-modification act additively against conjugative antibiotic resistance plasmid transfer in Enterococcus faecalis [J]. mSphere, 2016, 1(3):e00064-e00016
    Breuer R J, Hirt H, Dunny G M. Mechanistic features of the enterococcal pCF10 sex pheromone response and the biology of Enterococcus faecalis in its natural habitat[J]. Journal of Bacteriology, 2018, 200(14):e00733-e00717
    Hirt H, Greenwood-Quaintance K E, Karau M J, et al. Enterococcus faecalis sex pheromone cCF10 enhances conjugative plasmid transfer in vivo [J]. mBio, 2018, 9(1):e00037-e00018
    Witte W. Ecological impact of antibiotic use in animals on different complex microflora:Environment[J]. International Journal of Antimicrobial Agents, 2000, 14(4):321-325
    俞道进,曾振灵,陈杖榴.四环素类抗生素残留对水生态环境影响的研究进展[J].中国兽医学报, 2004, 24(5):515-517
    Mackevica A, Olsson M E, Hansen S F. The release of silver nanoparticles from commercial toothbrushes[J]. Journal of Hazardous Materials, 2017, 322(Pt A):270-275
    Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4944-4949
    Wang X, Mansukhani N D, Guiney L M, et al. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung[J]. Small, 2015, 11(38):5079-5087
    Dunny G M, Brown B L, Clewell D B. Induced cell aggregation and mating in Streptococcus faecalis :Evidence for a bacterial sex pheromone[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(7):3479-3483
    Dunny G, Funk C, Adsit J. Direct stimulation of the transfer of antibiotic resistance by sex pheromones in Streptococcus faecalis [J]. Plasmid, 1981, 6(3):270-278
    刘静慧,吴峰洋,陈宝江,等.粪肠球菌的益生特性和毒副作用研究[C].中国新疆和田:第九届(2019)中国兔业发展大会, 2019
    Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in gram-positive bacteria[J]. Microbiology and Molecular Biology Reviews, 2003, 67(2):277-301
    Hidron A I, Edwards J R, Patel J, et al. NHSN annual update:Antimicrobial-resistant pathogens associated with healthcare-associated infections:Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007[J]. Infection Control and Hospital Epidemiology, 2008, 29(11):996-1011
    Bakkali M. Could DNA uptake be a side effect of bacterial adhesion and twitching motility?[J]. Archives of Microbiology, 2013, 195(4):279-289
    Li F, Alvarez-Martinez C, Chen Y Q, et al. Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding[J]. Journal of Bacteriology, 2012, 194(15):4041-4051
    Huang C C, Al-Saab F, Wang Y D, et al. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature[J]. Nanoscale, 2014, 6(21):12792-12797
    Zou W, Li X Y, Li C H, et al. Influence of size and phase on the biodegradation, excretion, and phytotoxicity persistence of single-layer molybdenum disulfide[J]. Environmental Science&Technology, 2020, 54(19):12295-12306
    Guiney L M, Wang X, Xia T, et al. Assessing and mitigating the hazard potential of two-dimensional materials[J]. ACS Nano, 2018, 12(7):6360-6377
    Chng E L K, Sofer Z, Pumera M. MoS2 exhibits stronger toxicity with increased exfoliation[J]. Nanoscale, 2014, 6(23):14412-14418
    Zhou X F, Jia J B, Luo Z, et al. Remote induction of cell autophagy by 2D MoS2 nanosheets via perturbing cell surface receptors and mTOR pathway from outside of cells[J]. ACS Applied Materials&Interfaces, 2019, 11(7):6829-6839
  • 加载中
计量
  • 文章访问数:  1575
  • HTML全文浏览数:  1575
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-08

纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移

    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
    作者简介: 周宏瑞(1996-),男,硕士研究生,研究方向为纳米材料生物效应,E-mail:13427569748@163.com
  • 军事科学院军事医学研究院环境医学与作业医学研究所, 天津 300050
基金项目:

国家自然科学基金面上项目(42177414,31470234)

摘要: 粪肠球菌是一种通常寄居在人和动物胃肠道中的机会致病菌,并广泛存在于环境中。其可通过基因的水平转移获得抗生素抗性。纳米二硫化钼(molybdenum disulfide,MoS2)是一种新型的二维层状材料,有广泛的应用前景,但缺乏对纳米MoS2完整的生物安全评价。本研究以粪肠球菌为接合模型,将纳米MoS2加入接合体系中研究其对信息素诱导质粒pCF10接合转移的影响。研究发现,纳米MoS2具有促进接合转移的作用,其中25 mg·L-1的纳米MoS2促进效果最明显,可以将接合频率提高5倍~8倍。因为纳米MoS2良好的生物相容性对细胞膜通透性、细胞内活性氧水平和接合转移调控基因的表达都没有产生明显影响。纳米MoS2具有吸附性能,而且又是片层状的结构,这使得其可以附着在细菌表面,促进细菌的聚集,进而促进pCF10质粒接合转移的发生。

English Abstract

参考文献 (34)

目录

/

返回文章
返回