基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响
Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy
-
摘要: 壬基酚(4-NP)和双酚A (BPA)是2种在环境中普遍检出的雌激素物质,已经在地表水中广泛检出,且浓度很高。壬基酚和双酚A在地表水中检测浓度最高分别达到了644 μg·L-1和12 μg·L-1。目前有大量研究表明壬基酚和双酚A具有环境内分泌干扰效应,但是较少研究利用傅里叶变换红外光谱技术分析这2种物质对斑马鱼胚胎生理生化的影响。傅里叶变换红外光谱作为一种基于官能团和极性键振动结构分析技术,已广泛用于大分子化合物结构分析以及蛋白质的二级结构解析,是获取分子结构信息的有力工具,经常用于毒理学领域。本研究基于傅里叶变换红外光谱技术,分析了壬基酚和双酚A对斑马鱼胚胎的毒性。结果表明,当壬基酚≥ 322 μg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有33%、5%、0%、0%和0%;同时,暴露96 h时,可显著降低斑马鱼胚胎的存活率和增加致畸指数,且呈浓度依赖特征。特别是849.5 μg·L-1和1 038.5 μg·L-1壬基酚暴露后,斑马鱼胚胎全部死亡。类似地,当双酚A≥5.55 mg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有30%、0%、0%和0%;暴露96 h时,双酚A≥7.5 mg·L-1也导致斑马鱼胚胎的存活率显著下降和增加致畸指数,并随着浓度升高毒性增大。以胚胎死亡率和致畸形指数作为效应终点,壬基酚对斑马鱼胚胎的96 h-LC50和EC50分别为481.7 μg·L-1和362.6 μg·L-1;双酚A对斑马鱼胚胎的96 h-LC50和EC50为8.8 mg·L-1和7.9 mg·L-1。红外光谱分析显示,当壬基酚≥158.5 μg·L-1时,对酰胺Ⅱ、脂质、蛋白磷酸化等波数有显著影响;当双酚A≥1.75 mg·L-1时,对酰胺Ⅰ、酰胺Ⅱ、脂质和碳水化合物等波数有显著影响。上述研究结果显示壬基酚和双酚A对斑马鱼存活率、畸形率以及生理生化均有显著的影响。Abstract: Nonylphenol (4-NP) and bisphenol A (BPA) are two topical environment estrogen substances, and are widely detected in surface water. Furthermore, the measured concentrations of 4-NP (up to 644 μg· L-1) and BPA (up to 12 μg·L-1) are often high in the surface water. Early studies mainly focused on the endocrine disrupting effects of 4-NP and BPA. However, few studies investigate the effects of 4-NP and BPA on zebrafish eleutheroembryos based on Fourier Transform Infrared (FTIR) spectroscopy. FTIR spectroscopy is a sensor-based tool correlating the structure of biomolecules in different biological systems. As different chemical bonds of biochemical samples absorb light in the mid-infrared region, the application of FTIR spectroscopy help to determine the chemical structure of molecules in biochemical samples. The FTIR spectroscopy is frequently used in toxicology. In the present study, the zebrafish eleutheroembryos were exposed to 4-NP and BPA for 96 hours post-fertilization (hpf). The results showed that 72 h-hatching rates were 33%, 5%, 0%, 0% and 0%, respectively, when the concentrations of 4-NP ≥ 332 μg·L-1. Meanwhile, 4-NP significantly increased the mortality rates, and elevated the fish teratogenicity index at 96 hpf. Of note, all zebrafish eleutheroembryos died in 849.5 μg·L-1 and 1 038.5 μg·L-1 4-NP treatments. Similarly, 72 h-hatching rates were 30%, 0%, 0% and 0%, respectively, when the concentrations of BPA ≥ 5.55 mg·L-1. BPA significantly increased the mortality rates, and elevated the fish teratogenicity index at 96 hpf, when the concentrations of BPA ≥ 7.5 mg·L-1. Based on the mortality rate and fish teratogenicity index, the 96 h-LC50 and 96 h-EC50 of 4-NP were 481.7 μg·L-1 and 362.6 μg·L-1, respectively, and the 96 h-LC50 and 96 h-EC50 of BPA were 8.8 mg·L-1 and 7.9 mg·L-1, respectively. FITR analysis revealed that 4-NP were associated with biochemical alterations such as amide Ⅱ, lipids and protein phosphorylation, whereas BPA were associated with the amide I, amide Ⅱ, lipids and carbohydrate These results indicated that 4-NP and BPA had potential effect on survival, development and biochemistry of zebrafish eleutheroembryos.
-
Key words:
- nonylphenol /
- bisphenol A /
- Fourier transform infrared spectroscopy /
- zebrafish
-
-
Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:A report of the US EPA-sponsored workshop[J]. Environmental Health Perspectives, 1996, 104(Suppl.4):715-740 Hsu P C, Pan M H, Li L A, et al. Exposure in utero to 2, 2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring[J]. Toxicology and Applied Pharmacology, 2007, 221(1):68-75 Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 2000, 224(2):61-68 Brodkin M A, Madhoun H, Rameswaran M, et al. Atrazine is an immune disruptor in adult northern leopard frogs ( Rana pipiens )[J]. Environmental Toxicology and Chemistry, 2007, 26(1):80-84 Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells:A possible causal factor for developmental brain disorders?[J]. Chemosphere, 2007, 67(9):S412-S420 Cillo F, de Eguileor M, Gandolfi F, et al. Aroclor-1254 affects mRNA polyadenylation, translational activation, cell morphology, and DNA integrity of rat primary prostate cells[J]. Endocrine-Related Cancer, 2007, 14(2):257-266 Cai Q Y, Mo C H, Wu Q T, et al. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China[J]. Chemosphere, 2007, 68(9):1751-1762 Xu J, Wang P, Guo W F, et al. Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China[J]. Chemosphere, 2006, 65(9):1445-1451 郝瑞霞,梁鹏,周玉文.城市污水处理过程中壬基酚的迁移转化途径研究[J].中国给水排水, 2007, 23(1):105-108 Hao R X, Liang P, Zhou Y W. Study on translation and conversion behavior of nonylphenol in municipal wastewater treatment[J]. China Water&Wastewater, 2007, 23(1):105-108(in Chinese)
周海东,黄霞,王晓琳,等.北京市城市污水雌激素活性的研究[J].环境科学, 2009, 30(12):3590-3595 Zhou H D, Huang X, Wang X L, et al. Evaluation of estrogenicity of sewage samples from Beijing, China[J]. Environmental Science, 2009, 30(12):3590-3595(in Chinese)
黄卫国,唐建辉,陈颖军,等.山东半岛典型海湾中烷基酚及双酚A的分布特征[J].海洋环境科学, 2012, 31(3):358-363 Huang W G, Tang J H, Chen Y J, et al. Distribution characteristics of alkylphenols and bisphenol A in surface waters from typical bays around Shandong Peninsula[J]. Marine Environmental Science, 2012, 31(3):358-363(in Chinese)
Fensterheim R J. Comment on "Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain)"[J]. Environmental Science&Technology, 2001, 35(20):4156 Cheng Y, Shan Z J, Zhou J Y, et al. Effects of 4-nonylphenol in drinking water on the reproductive capacity of Japanese quails ( Coturnix japonica )[J]. Chemosphere, 2017, 175:219-227 邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学报, 2002, 22(1):12-16 Shao B, Hu J Y, Yang M. A survey of nonylphenol in aquatic environment of Chongqing valley[J]. Acta Scientiae Circumstantiae, 2002, 22(1):12-16(in Chinese)
Salomon K Y, Zhang C X, Sylvain A K, et al. Determination of nonylphenol and its ethoxylates by HPLC 1100 in water environment of Taiyuan City[J]. International Journal of Environment and Climate Change, 2019:660-670 董军,李向丽,梁锐杰.珠江口地区水体中双酚A污染及其与环境因子的关系[J].生态与农村环境学报, 2009, 25(2):94-97 Dong J, Li X L, Liang R J. Bisphenol A pollution of surface water and its environmental factors[J]. Journal of Ecology and Rural Environment, 2009, 25(2):94-97(in Chinese)
马晓雁,高乃云,李青松,等.黄浦江原水及水处理过程中内分泌干扰物状况调查[J].中国给水排水, 2006, 22(19):1-4 Ma X Y, Gao N Y, Li Q S, et al. Investigation of several endocrine disrupting chemicals in Huangpu River and water treatment units of a waterworks[J]. China Water&Wastewater, 2006, 22(19):1-4(in Chinese)
Crain D A, Eriksen M, Iguchi T, et al. An ecological assessment of bisphenol-A:Evidence from comparative biology[J]. Reproductive Toxicology, 2007, 24(2):225-239 Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000:A national reconnaissance[J]. Environmental Science&Technology, 2002, 36(6):1202-1211 Furlan P Y, Smerker J, Barrett J, et al. Characterization of proteins in mouse blood by Fourier transform infrared spectroscopy[J]. Spectroscopy Letters, 2007, 40(3):465-473 Furlan P Y, Scott S A, Peaslee M H. FTIR-ATR study of pH effects on egg albumin secondary structure[J]. Spectroscopy Letters, 2007, 40(3):475-482 Henczová M, Deér A K, Komlósi V, et al. Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2006, 385(3):652-659 Henczová M, Deér A K, Filla A, et al. Effects of Cu2+ and Pb2+ on different fish species:Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2008, 148(1):53-60 Cakmak G, Togan I, Severcan F. 17beta-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy:A comparative study with nonylphenol[J]. Aquatic Toxicology, 2006, 77(1):53-63 Llabjani V, Jones K C, Thomas G O, et al. Polybrominated diphenyl ether-associated alterations in cell biochemistry as determined by attenuated total reflection Fourier-transform infrared spectroscopy:A comparison with DNA-reactive and/or endocrine-disrupting agents[J]. Environmental Science&Technology, 2009, 43(9):3356-3364 Llabjani V, Trevisan J, Jones K C, et al. Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells:Biochemical alterations assessed by IR spectroscopy and multivariate analysis[J]. Environmental Science&Technology, 2010, 44(10):3992-3998 Hu L X, Tian F, Martin F L, et al. Biochemical alterations in duckweed and algae induced by carrier solvents:Selection of an appropriate solvent in toxicity testing[J]. Environmental Toxicology and Chemistry, 2017, 36(10):2631-2639 Nagel R. DarT:The embryo test with the zebrafish Danio rerio :A general model in ecotoxicology and toxicology[J]. ALTEX, 2002, 19(Suppl.1):38-48 Bartzke M, Delov V, Stahlschmidt-Allner P, et al. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach[J]. Journal of Soils and Sediments, 2010, 10(3):389-399 Walker M K, Peterson R E. Aquatic Toxicity of Dioxins and Related Chemicals[M]//Dioxins and Health. Boston, MA:Springer US, 1994:347-387 Holcombe G W, Phipps G L, Knuth M L, et al. The acute toxicity of selected substituted phenols, benzenes and benzoic acid esters to fathead minnows Pimephales promelas [J]. Environmental Pollution Series A, Ecological and Biological, 1984, 35(4):367-381 Bhattacharya H, Xiao Q, Lun L M. Toxicity studies of nonylphenol on rosy barb ( Puntius conchonious ):A biochemical and histopathological evaluation[J]. Tissue and Cell, 2008, 40(4):243-249 吴伟,瞿建宏,陈家长,等.壬基酚聚氧乙烯醚及其降解产物对水生生物的毒理效应[J].湛江海洋大学学报, 2003, 23(6):39-44 Wu W, Qu J H, Chen J Z, et al. Toxic effects of nonylphenol ethoxylates and its degradation product on aquatic organisms[J]. Journal of Zhanjiang Ocean University, 2003, 23(6):39-44(in Chinese)
黄长江,董巧香,马茹飞.壬基酚对奥尼罗非鱼( Oreochromis niloticus × O. aureus )的急性毒性研究[J].海洋与湖沼, 2006, 37(4):309-315 Huang C J, Dong Q X, Ma R F. Nonylphenol:A toxicant to hybrid tilapia ( Oreochromis niloticus × O. aureus )[J]. Oceanologia et Limnologia Sinica, 2006, 37(4):309-315(in Chinese)
Fei X C, Song C, Gao H W. Transmembrane transports of acrylamide and bisphenol A and effects on development of zebrafish ( Danio rerio )[J]. Journal of Hazardous Materials, 2010, 184(1-3):81-88 McCormick J M, van Es T, Cooper K R, et al. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish ( Danio rerio ) embryo[J]. Environmental Science&Technology, 2011, 45(15):6567-6574 Chan W K, Chan K M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA[J]. Aquatic Toxicology, 2012, 108:106-111 Jiang Y X, Liu Y S, Ying G G, et al. A new tool for assessing sediment quality based on the Weight of Evidence approach and grey TOPSIS[J]. The Science of the Total Environment, 2015, 537:369-376 Furlan P Y, Scott S A, Peaslee M H. FTIR-ATR study of pH effects on egg albumin secondary structure[J]. Spectroscopy Letters, 2007, 40(3):475-482 Larsen B K, Bjørnstad A, Sundt R C, et al. Comparison of protein expression in plasma from nonylphenol and bisphenol A-exposed Atlantic cod ( Gadus morhua ) and turbot ( Scophthalmus maximus ) by use of SELDI-TOF[J]. Aquatic Toxicology, 2006, 78(Suppl.1):S25-S33 Aravindakshan J, Cyr D G. Nonylphenol alters connexin 43 levels and connexin 43 phosphorylation via an inhibition of the p38-mitogen-activated protein kinase pathway[J]. Biology of Reproduction, 2005, 72(5):1232-1240 Nair P M G, Choi J. Effects of cadmium chloride and nonylphenol on the expression of StAR-related lipid transfer domain containing protein (START1) gene in aquatic midge, Chironomus riparius [J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2012, 155(2):369-374 Park S Y, Choi J. Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species:Freshwater crustacean, Daphnia magna , and aquatic midge, Chironomus riparius [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):463-468 Wada K, Sakamoto H, Nishikawa K, et al. Life style-related diseases of the digestive system:Endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome[J]. Journal of Pharmacological Sciences, 2007, 105(2):133-137 Ji M K, Kabra A N, Choi J, et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris [J]. Ecological Engineering, 2014, 73:260-269 Ceylan C, Tanrikul T, Özgener H. Biophysical evaluation of physiological effects of gilthead sea bream ( Sparus aurata ) farming using FTIR spectroscopy[J]. Food Chemistry, 2014, 145:1055-1060 Elsby R, Ashby J, Sumpter J P, et al. Obstacles to the prediction of estrogenicity from chemical structure:Assay-mediated metabolic transformation and the apparent promiscuous nature of the estrogen receptor[J]. Biochemical Pharmacology, 2000, 60(10):1519-1530 Chen H L, Zhao L, Yu Q J. Determination and reduced life expectancy model and molecular docking analyses of estrogenic potentials of 17β -estradiol, bisphenol A and nonylphenol on expression of vitellogenin gene (vtg1) in zebrafish[J]. Chemosphere, 2019, 221:727-734 Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen[J]. Environmental Toxicology and Chemistry, 1996, 15(3):241-248 -

计量
- 文章访问数: 2573
- HTML全文浏览数: 2573
- PDF下载数: 73
- 施引文献: 0