基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响

刘芳, 田斐, 史文俊. 基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响[J]. 生态毒理学报, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
引用本文: 刘芳, 田斐, 史文俊. 基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响[J]. 生态毒理学报, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
Liu Fang, Tian Fei, Shi Wenjun. Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy[J]. Asian journal of ecotoxicology, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
Citation: Liu Fang, Tian Fei, Shi Wenjun. Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy[J]. Asian journal of ecotoxicology, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003

基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响

    作者简介: 刘芳(1981-),女,硕士研究生,研究方向为生态毒理学,E-mail:liufang77@m.scnu.edu.cn
    通讯作者: 史文俊, E-mail: wenjun.shi@m.scnu.edu.cn
  • 基金项目:

    广东省自然科学基金资助项目(2017A030313220,2014A030310236)

    国家自然科学基金资助项目(41807480)

  • 中图分类号: X171.5

Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy

    Corresponding author: Shi Wenjun, wenjun.shi@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 壬基酚(4-NP)和双酚A (BPA)是2种在环境中普遍检出的雌激素物质,已经在地表水中广泛检出,且浓度很高。壬基酚和双酚A在地表水中检测浓度最高分别达到了644 μg·L-1和12 μg·L-1。目前有大量研究表明壬基酚和双酚A具有环境内分泌干扰效应,但是较少研究利用傅里叶变换红外光谱技术分析这2种物质对斑马鱼胚胎生理生化的影响。傅里叶变换红外光谱作为一种基于官能团和极性键振动结构分析技术,已广泛用于大分子化合物结构分析以及蛋白质的二级结构解析,是获取分子结构信息的有力工具,经常用于毒理学领域。本研究基于傅里叶变换红外光谱技术,分析了壬基酚和双酚A对斑马鱼胚胎的毒性。结果表明,当壬基酚≥ 322 μg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有33%、5%、0%、0%和0%;同时,暴露96 h时,可显著降低斑马鱼胚胎的存活率和增加致畸指数,且呈浓度依赖特征。特别是849.5 μg·L-1和1 038.5 μg·L-1壬基酚暴露后,斑马鱼胚胎全部死亡。类似地,当双酚A≥5.55 mg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有30%、0%、0%和0%;暴露96 h时,双酚A≥7.5 mg·L-1也导致斑马鱼胚胎的存活率显著下降和增加致畸指数,并随着浓度升高毒性增大。以胚胎死亡率和致畸形指数作为效应终点,壬基酚对斑马鱼胚胎的96 h-LC50和EC50分别为481.7 μg·L-1和362.6 μg·L-1;双酚A对斑马鱼胚胎的96 h-LC50和EC50为8.8 mg·L-1和7.9 mg·L-1。红外光谱分析显示,当壬基酚≥158.5 μg·L-1时,对酰胺Ⅱ、脂质、蛋白磷酸化等波数有显著影响;当双酚A≥1.75 mg·L-1时,对酰胺Ⅰ、酰胺Ⅱ、脂质和碳水化合物等波数有显著影响。上述研究结果显示壬基酚和双酚A对斑马鱼存活率、畸形率以及生理生化均有显著的影响。
  • 加载中
  • Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:A report of the US EPA-sponsored workshop[J]. Environmental Health Perspectives, 1996, 104(Suppl.4):715-740
    Hsu P C, Pan M H, Li L A, et al. Exposure in utero to 2, 2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring[J]. Toxicology and Applied Pharmacology, 2007, 221(1):68-75
    Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 2000, 224(2):61-68
    Brodkin M A, Madhoun H, Rameswaran M, et al. Atrazine is an immune disruptor in adult northern leopard frogs ( Rana pipiens )[J]. Environmental Toxicology and Chemistry, 2007, 26(1):80-84
    Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells:A possible causal factor for developmental brain disorders?[J]. Chemosphere, 2007, 67(9):S412-S420
    Cillo F, de Eguileor M, Gandolfi F, et al. Aroclor-1254 affects mRNA polyadenylation, translational activation, cell morphology, and DNA integrity of rat primary prostate cells[J]. Endocrine-Related Cancer, 2007, 14(2):257-266
    Cai Q Y, Mo C H, Wu Q T, et al. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China[J]. Chemosphere, 2007, 68(9):1751-1762
    Xu J, Wang P, Guo W F, et al. Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China[J]. Chemosphere, 2006, 65(9):1445-1451
    郝瑞霞,梁鹏,周玉文.城市污水处理过程中壬基酚的迁移转化途径研究[J].中国给水排水, 2007, 23(1):105-108

    Hao R X, Liang P, Zhou Y W. Study on translation and conversion behavior of nonylphenol in municipal wastewater treatment[J]. China Water&Wastewater, 2007, 23(1):105-108(in Chinese)

    周海东,黄霞,王晓琳,等.北京市城市污水雌激素活性的研究[J].环境科学, 2009, 30(12):3590-3595

    Zhou H D, Huang X, Wang X L, et al. Evaluation of estrogenicity of sewage samples from Beijing, China[J]. Environmental Science, 2009, 30(12):3590-3595(in Chinese)

    黄卫国,唐建辉,陈颖军,等.山东半岛典型海湾中烷基酚及双酚A的分布特征[J].海洋环境科学, 2012, 31(3):358-363

    Huang W G, Tang J H, Chen Y J, et al. Distribution characteristics of alkylphenols and bisphenol A in surface waters from typical bays around Shandong Peninsula[J]. Marine Environmental Science, 2012, 31(3):358-363(in Chinese)

    Fensterheim R J. Comment on "Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain)"[J]. Environmental Science&Technology, 2001, 35(20):4156
    Cheng Y, Shan Z J, Zhou J Y, et al. Effects of 4-nonylphenol in drinking water on the reproductive capacity of Japanese quails ( Coturnix japonica )[J]. Chemosphere, 2017, 175:219-227
    邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学报, 2002, 22(1):12-16

    Shao B, Hu J Y, Yang M. A survey of nonylphenol in aquatic environment of Chongqing valley[J]. Acta Scientiae Circumstantiae, 2002, 22(1):12-16(in Chinese)

    Salomon K Y, Zhang C X, Sylvain A K, et al. Determination of nonylphenol and its ethoxylates by HPLC 1100 in water environment of Taiyuan City[J]. International Journal of Environment and Climate Change, 2019:660-670
    董军,李向丽,梁锐杰.珠江口地区水体中双酚A污染及其与环境因子的关系[J].生态与农村环境学报, 2009, 25(2):94-97

    Dong J, Li X L, Liang R J. Bisphenol A pollution of surface water and its environmental factors[J]. Journal of Ecology and Rural Environment, 2009, 25(2):94-97(in Chinese)

    马晓雁,高乃云,李青松,等.黄浦江原水及水处理过程中内分泌干扰物状况调查[J].中国给水排水, 2006, 22(19):1-4

    Ma X Y, Gao N Y, Li Q S, et al. Investigation of several endocrine disrupting chemicals in Huangpu River and water treatment units of a waterworks[J]. China Water&Wastewater, 2006, 22(19):1-4(in Chinese)

    Crain D A, Eriksen M, Iguchi T, et al. An ecological assessment of bisphenol-A:Evidence from comparative biology[J]. Reproductive Toxicology, 2007, 24(2):225-239
    Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000:A national reconnaissance[J]. Environmental Science&Technology, 2002, 36(6):1202-1211
    Furlan P Y, Smerker J, Barrett J, et al. Characterization of proteins in mouse blood by Fourier transform infrared spectroscopy[J]. Spectroscopy Letters, 2007, 40(3):465-473
    Furlan P Y, Scott S A, Peaslee M H. FTIR-ATR study of pH effects on egg albumin secondary structure[J]. Spectroscopy Letters, 2007, 40(3):475-482
    Henczová M, Deér A K, Komlósi V, et al. Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2006, 385(3):652-659
    Henczová M, Deér A K, Filla A, et al. Effects of Cu2+ and Pb2+ on different fish species:Liver cytochrome P450-dependent monooxygenase activities and FTIR spectra[J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2008, 148(1):53-60
    Cakmak G, Togan I, Severcan F. 17beta-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy:A comparative study with nonylphenol[J]. Aquatic Toxicology, 2006, 77(1):53-63
    Llabjani V, Jones K C, Thomas G O, et al. Polybrominated diphenyl ether-associated alterations in cell biochemistry as determined by attenuated total reflection Fourier-transform infrared spectroscopy:A comparison with DNA-reactive and/or endocrine-disrupting agents[J]. Environmental Science&Technology, 2009, 43(9):3356-3364
    Llabjani V, Trevisan J, Jones K C, et al. Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells:Biochemical alterations assessed by IR spectroscopy and multivariate analysis[J]. Environmental Science&Technology, 2010, 44(10):3992-3998
    Hu L X, Tian F, Martin F L, et al. Biochemical alterations in duckweed and algae induced by carrier solvents:Selection of an appropriate solvent in toxicity testing[J]. Environmental Toxicology and Chemistry, 2017, 36(10):2631-2639
    Nagel R. DarT:The embryo test with the zebrafish Danio rerio :A general model in ecotoxicology and toxicology[J]. ALTEX, 2002, 19(Suppl.1):38-48
    Bartzke M, Delov V, Stahlschmidt-Allner P, et al. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach[J]. Journal of Soils and Sediments, 2010, 10(3):389-399
    Walker M K, Peterson R E. Aquatic Toxicity of Dioxins and Related Chemicals[M]//Dioxins and Health. Boston, MA:Springer US, 1994:347-387
    Holcombe G W, Phipps G L, Knuth M L, et al. The acute toxicity of selected substituted phenols, benzenes and benzoic acid esters to fathead minnows Pimephales promelas [J]. Environmental Pollution Series A, Ecological and Biological, 1984, 35(4):367-381
    Bhattacharya H, Xiao Q, Lun L M. Toxicity studies of nonylphenol on rosy barb ( Puntius conchonious ):A biochemical and histopathological evaluation[J]. Tissue and Cell, 2008, 40(4):243-249
    吴伟,瞿建宏,陈家长,等.壬基酚聚氧乙烯醚及其降解产物对水生生物的毒理效应[J].湛江海洋大学学报, 2003, 23(6):39-44

    Wu W, Qu J H, Chen J Z, et al. Toxic effects of nonylphenol ethoxylates and its degradation product on aquatic organisms[J]. Journal of Zhanjiang Ocean University, 2003, 23(6):39-44(in Chinese)

    黄长江,董巧香,马茹飞.壬基酚对奥尼罗非鱼( Oreochromis niloticus × O. aureus )的急性毒性研究[J].海洋与湖沼, 2006, 37(4):309-315

    Huang C J, Dong Q X, Ma R F. Nonylphenol:A toxicant to hybrid tilapia ( Oreochromis niloticus × O. aureus )[J]. Oceanologia et Limnologia Sinica, 2006, 37(4):309-315(in Chinese)

    Fei X C, Song C, Gao H W. Transmembrane transports of acrylamide and bisphenol A and effects on development of zebrafish ( Danio rerio )[J]. Journal of Hazardous Materials, 2010, 184(1-3):81-88
    McCormick J M, van Es T, Cooper K R, et al. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish ( Danio rerio ) embryo[J]. Environmental Science&Technology, 2011, 45(15):6567-6574
    Chan W K, Chan K M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA[J]. Aquatic Toxicology, 2012, 108:106-111
    Jiang Y X, Liu Y S, Ying G G, et al. A new tool for assessing sediment quality based on the Weight of Evidence approach and grey TOPSIS[J]. The Science of the Total Environment, 2015, 537:369-376
    Furlan P Y, Scott S A, Peaslee M H. FTIR-ATR study of pH effects on egg albumin secondary structure[J]. Spectroscopy Letters, 2007, 40(3):475-482
    Larsen B K, Bjørnstad A, Sundt R C, et al. Comparison of protein expression in plasma from nonylphenol and bisphenol A-exposed Atlantic cod ( Gadus morhua ) and turbot ( Scophthalmus maximus ) by use of SELDI-TOF[J]. Aquatic Toxicology, 2006, 78(Suppl.1):S25-S33
    Aravindakshan J, Cyr D G. Nonylphenol alters connexin 43 levels and connexin 43 phosphorylation via an inhibition of the p38-mitogen-activated protein kinase pathway[J]. Biology of Reproduction, 2005, 72(5):1232-1240
    Nair P M G, Choi J. Effects of cadmium chloride and nonylphenol on the expression of StAR-related lipid transfer domain containing protein (START1) gene in aquatic midge, Chironomus riparius [J]. Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2012, 155(2):369-374
    Park S Y, Choi J. Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species:Freshwater crustacean, Daphnia magna , and aquatic midge, Chironomus riparius [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):463-468
    Wada K, Sakamoto H, Nishikawa K, et al. Life style-related diseases of the digestive system:Endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome[J]. Journal of Pharmacological Sciences, 2007, 105(2):133-137
    Ji M K, Kabra A N, Choi J, et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris [J]. Ecological Engineering, 2014, 73:260-269
    Ceylan C, Tanrikul T, Özgener H. Biophysical evaluation of physiological effects of gilthead sea bream ( Sparus aurata ) farming using FTIR spectroscopy[J]. Food Chemistry, 2014, 145:1055-1060
    Elsby R, Ashby J, Sumpter J P, et al. Obstacles to the prediction of estrogenicity from chemical structure:Assay-mediated metabolic transformation and the apparent promiscuous nature of the estrogen receptor[J]. Biochemical Pharmacology, 2000, 60(10):1519-1530
    Chen H L, Zhao L, Yu Q J. Determination and reduced life expectancy model and molecular docking analyses of estrogenic potentials of 17β -estradiol, bisphenol A and nonylphenol on expression of vitellogenin gene (vtg1) in zebrafish[J]. Chemosphere, 2019, 221:727-734
    Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen[J]. Environmental Toxicology and Chemistry, 1996, 15(3):241-248
  • 加载中
计量
  • 文章访问数:  2573
  • HTML全文浏览数:  2573
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-19
刘芳, 田斐, 史文俊. 基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响[J]. 生态毒理学报, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
引用本文: 刘芳, 田斐, 史文俊. 基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响[J]. 生态毒理学报, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
Liu Fang, Tian Fei, Shi Wenjun. Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy[J]. Asian journal of ecotoxicology, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003
Citation: Liu Fang, Tian Fei, Shi Wenjun. Effects of Nonylphenol and Bisphenol A on Zebrafish Eleutheroembryos Based on Fourier Transform Infrared Spectroscopy[J]. Asian journal of ecotoxicology, 2022, 17(1): 224-235. doi: 10.7524/AJE.1673-5897.20211019003

基于傅里叶变换红外光谱技术分析壬基酚和双酚A对斑马鱼胚胎的影响

    通讯作者: 史文俊, E-mail: wenjun.shi@m.scnu.edu.cn
    作者简介: 刘芳(1981-),女,硕士研究生,研究方向为生态毒理学,E-mail:liufang77@m.scnu.edu.cn
  • 1. 华南师范大学地理科学学院, 广州 510631;
  • 2. 中国水产科学研究院南海水产研究所, 广东省渔业生态环境重点实验室, 农业农村部南海渔业资源环境科学观测实验站, 广东珠江口生态系统野外科学观测研究站, 广州 510300;
  • 3. 中国科学院广州地球化学研究所, 广州 510640;
  • 4. 华南师范大学环境研究院广东省化学污染与环境安全重点实验室, 华南师范大学环境理论化学教育部重点实验室, 广州 510006
基金项目:

广东省自然科学基金资助项目(2017A030313220,2014A030310236)

国家自然科学基金资助项目(41807480)

摘要: 壬基酚(4-NP)和双酚A (BPA)是2种在环境中普遍检出的雌激素物质,已经在地表水中广泛检出,且浓度很高。壬基酚和双酚A在地表水中检测浓度最高分别达到了644 μg·L-1和12 μg·L-1。目前有大量研究表明壬基酚和双酚A具有环境内分泌干扰效应,但是较少研究利用傅里叶变换红外光谱技术分析这2种物质对斑马鱼胚胎生理生化的影响。傅里叶变换红外光谱作为一种基于官能团和极性键振动结构分析技术,已广泛用于大分子化合物结构分析以及蛋白质的二级结构解析,是获取分子结构信息的有力工具,经常用于毒理学领域。本研究基于傅里叶变换红外光谱技术,分析了壬基酚和双酚A对斑马鱼胚胎的毒性。结果表明,当壬基酚≥ 322 μg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有33%、5%、0%、0%和0%;同时,暴露96 h时,可显著降低斑马鱼胚胎的存活率和增加致畸指数,且呈浓度依赖特征。特别是849.5 μg·L-1和1 038.5 μg·L-1壬基酚暴露后,斑马鱼胚胎全部死亡。类似地,当双酚A≥5.55 mg·L-1时,斑马鱼胚胎72 hpf孵化率分别只有30%、0%、0%和0%;暴露96 h时,双酚A≥7.5 mg·L-1也导致斑马鱼胚胎的存活率显著下降和增加致畸指数,并随着浓度升高毒性增大。以胚胎死亡率和致畸形指数作为效应终点,壬基酚对斑马鱼胚胎的96 h-LC50和EC50分别为481.7 μg·L-1和362.6 μg·L-1;双酚A对斑马鱼胚胎的96 h-LC50和EC50为8.8 mg·L-1和7.9 mg·L-1。红外光谱分析显示,当壬基酚≥158.5 μg·L-1时,对酰胺Ⅱ、脂质、蛋白磷酸化等波数有显著影响;当双酚A≥1.75 mg·L-1时,对酰胺Ⅰ、酰胺Ⅱ、脂质和碳水化合物等波数有显著影响。上述研究结果显示壬基酚和双酚A对斑马鱼存活率、畸形率以及生理生化均有显著的影响。

English Abstract

参考文献 (49)

返回顶部

目录

/

返回文章
返回