不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建

郭煊, 王学东, 李菊梅, 马义兵. 不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建[J]. 生态毒理学报, 2020, 15(6): 123-131. doi: 10.7524/AJE.1673-5897.20200216001
引用本文: 郭煊, 王学东, 李菊梅, 马义兵. 不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建[J]. 生态毒理学报, 2020, 15(6): 123-131. doi: 10.7524/AJE.1673-5897.20200216001
Guo Xuan, Wang Xuedong, Li Jumei, Ma Yibing. Effect of Different pH Values on the Toxicity of Antimony (V) to Barley Root Elongation and the Construction of Biotic Ligand Model[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 123-131. doi: 10.7524/AJE.1673-5897.20200216001
Citation: Guo Xuan, Wang Xuedong, Li Jumei, Ma Yibing. Effect of Different pH Values on the Toxicity of Antimony (V) to Barley Root Elongation and the Construction of Biotic Ligand Model[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 123-131. doi: 10.7524/AJE.1673-5897.20200216001

不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建

    作者简介: 郭煊(1994-),男,硕士研究生,研究方向为重金属生态毒理学,E-mail:674336687@qq.com
    通讯作者: 王学东, E-mail: xdwang@cnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41877496)

  • 中图分类号: X171.5

Effect of Different pH Values on the Toxicity of Antimony (V) to Barley Root Elongation and the Construction of Biotic Ligand Model

    Corresponding author: Wang Xuedong, xdwang@cnu.edu.cn
  • Fund Project:
  • 摘要: 随工矿业发展,越来越多的锑(Sb)元素进入到环境中,因此了解Sb的毒性及生态风险至关重要。本文利用溶液模拟实验,设置了9个pH梯度,研究了不同pH梯度下Sb(Ⅴ)的形态变化及其植物毒性。研究结果表明,pH在4.5~8.5的范围内,Sb(Ⅴ)在溶液中主要以Sb(OH)6-和Sb(OH)5 2种形态存在,其中Sb(OH)6-始终占总Sb(Ⅴ)的97%以上。pH在4.5~6.5时,以大麦根伸长表示的EC50(Sb(OH)6-)(EC50为大麦根伸长被抑制50%时Sb(Ⅴ)的剂量)随着OH-活度的增加而增加,且与OH-具有显著的线性关系(r2=0.93、P<0.01),但当pH在7.0~8.5之间,不同pH梯度的EC50(Sb(OH)6-)没有显著差异,而EC50(Sb(OH)5)在整个pH范围内(pH=4.5~8.5)随着pH升高而下降。Sb形态与pH线性分析表明,Sb(OH)5和Sb(OH)6-均具有毒性,但随pH升高,Sb(OH)5的活度占比降低。基于BLM方程计算得出Sb(OH)6-、Sb(OH)5与生物配体的络合平衡常数,分别为lgKSb(OH)6BL=1.34、lgKSb(OH)5BL=3.08。变量的灵敏性分析也表明大麦根长对Sb(OH)5的响应最敏感。基于所得络合平衡常数的BLM能够较好地预测Sb(Ⅴ)对大麦的毒性。
  • 加载中
  • 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004, 16(1):131-135

    He M C, Wan H Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Progress in Chemistry, 2004, 16(1):131-135(in Chinese)

    U.S. Geological Survey (USGS). 2016 Minerals yearbook antimony (advance release)[R]//U.S. Geological Survey. Mineral Commodity Summaries.:USGS, 2019
    He M C, Wang N N, Long X J, et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39
    Zhou J W, Nyirenda M T, Xie L N, et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China[J]. Applied Geochemistry, 2017, 77:52-61
    Qi C C, Liu G J, Kang Y, et al. Assessment and distribution of antimony in soils around three coal mines, Anhui, China[J]. Journal of the Air & Waste Management Association, 2011, 61(8):850-857
    林祥龙, 孙在金, 马瑾, 等. 不同形态锑对土壤白符跳(Folsomia candida)的毒性差异[J]. 农业环境科学学报, 2017, 36(4):657-664

    Lin X L, Sun Z J, Ma J, et al. Toxicity differences of different forms of antimony to soil-dwelling springtail(Folsomia candida)[J]. Journal of Agro-Environment Science, 2017, 36(4):657-664(in Chinese)

    黄丽春, 石重光, 陈家玉. 三氧化二锑小鼠急性毒性实验研究[J]. 职业卫生与病伤, 1996, 11(3):170-171

    Huang L C, Shi C G, Chen J Y. Experimental study on acute toxicity of antimony trioxide in mice[J].Occupational Health and Damage, 1996, 11(3):170-171(in Chinese)

    何孟常, 谢南岳. 土壤中锑对水稻的污染及改良措施[J]. 湖南农学院学报, 1994(1):47-51 He M C, Xie N Y. Study of the rice pollution and amendment of antimony in soils[J]. Journal of Hunan Agricultural University, 1994

    (1):47-51(in Chinese)

    Feng R W, Wei C Y, Tu S X, et al. Antimony accumulation and antioxidative responses in four fern plants[J]. Plant and Soil, 2008, 317(1-2):93-101
    Shtangeeva I, Bali R, Harris A. Bioavailability and toxicity of antimony[J]. Journal of Geochemical Exploration, 2011, 110(1):40-45
    戈兆凤, 韦朝阳. 锑环境健康效应的研究进展[J]. 环境与健康杂志, 2011, 28(7):649-653

    Ge Z F, Wei C Y. Environmental health effect of antimony:A review of recent researches[J]. Journal of Environment and Health, 2011, 28(7):649-653(in Chinese)

    Mitsunobu S, Harada T, Takahashi Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23):7270-7276
    Okkenhaug G, Zhu Y G, Luo L, et al. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 2011, 159(10):2427-2434
    Cai Y B, Mi Y T, Zhang H. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316:102-109
    Wilson S C, Lockwood P V, Ashley P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158(5):1169-1181
    Li B, Zhang X, Wang X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766
    Song N N, Ma Y B. The toxicity of HCrO4- and CrO42- to barley root elongation in solution culture:pH effect and modelling[J]. Chemosphere, 2017, 171:537-543
    Wang X D, Hua L, Ma Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare):Influence of calcium, magnesium, sodium, potassium and pH[J]. Chemosphere, 2012, 89(1):89-95
    Weng L P, Wolthoorn A, Lexmond T M, et al. Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models[J]. Environmental Science & Technology, 2004, 38(1):156-162
    Crémazy A, Campbell P G, Fortin C. The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above:Possible role of hydroxo-species[J]. Environmental Science & Technology, 2013, 47(5):2408-2415
    Wang X D, Wu M Y, Ma J X, et al. Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory[J]. Journal of Environmental Sciences, 2016, 42:112-118
    张璇, 华珞, 王学东, 等. 不同pH值条件下镍对大麦的急性毒性[J]. 中国环境科学, 2008, 28(7):640-645

    Zhang X, Hua L, Wang X D, et al. Effect of pH on nickel acute toxicity to barley (Hordeum vulgare)[J]. China Environmental Science, 2008, 28(7):640-645(in Chinese)

    Lock K, Criel P, De Schamphelaere K A, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare)[J]. Ecotoxicology and Environmental Safety, 2007, 68(2):299-304
    International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth. ISO 11269-1, Geneva:ISO, 1993
    Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2):293-297
    Thakali S, Allen H E, di Toro D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006, 40(22):7085-7093
    Buschmann J, Sigg L. Antimony(Ⅲ) binding to humic substances:Influence of pH and type of humic acid[J]. Environmental Science & Technology, 2004, 38(17):4535-4541
    Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278
    Jo H J, Son J, Cho K, et al. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna[J]. Chemosphere, 2010, 81(10):1301-1307
  • 加载中
计量
  • 文章访问数:  1749
  • HTML全文浏览数:  1749
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-16

不同pH值下锑(V)对大麦根伸长的毒性及其生物配体模型的构建

    通讯作者: 王学东, E-mail: xdwang@cnu.edu.cn
    作者简介: 郭煊(1994-),男,硕士研究生,研究方向为重金属生态毒理学,E-mail:674336687@qq.com
  • 1. 首都师范大学资源环境与旅游学院, 北京 100048;
  • 2. 中国农业科学院农业资源与农业区划研究所, 北京 100081;
  • 3. 澳门科技大学澳门环境研究院, 澳门 999078
基金项目:

国家自然科学基金资助项目(41877496)

摘要: 随工矿业发展,越来越多的锑(Sb)元素进入到环境中,因此了解Sb的毒性及生态风险至关重要。本文利用溶液模拟实验,设置了9个pH梯度,研究了不同pH梯度下Sb(Ⅴ)的形态变化及其植物毒性。研究结果表明,pH在4.5~8.5的范围内,Sb(Ⅴ)在溶液中主要以Sb(OH)6-和Sb(OH)5 2种形态存在,其中Sb(OH)6-始终占总Sb(Ⅴ)的97%以上。pH在4.5~6.5时,以大麦根伸长表示的EC50(Sb(OH)6-)(EC50为大麦根伸长被抑制50%时Sb(Ⅴ)的剂量)随着OH-活度的增加而增加,且与OH-具有显著的线性关系(r2=0.93、P<0.01),但当pH在7.0~8.5之间,不同pH梯度的EC50(Sb(OH)6-)没有显著差异,而EC50(Sb(OH)5)在整个pH范围内(pH=4.5~8.5)随着pH升高而下降。Sb形态与pH线性分析表明,Sb(OH)5和Sb(OH)6-均具有毒性,但随pH升高,Sb(OH)5的活度占比降低。基于BLM方程计算得出Sb(OH)6-、Sb(OH)5与生物配体的络合平衡常数,分别为lgKSb(OH)6BL=1.34、lgKSb(OH)5BL=3.08。变量的灵敏性分析也表明大麦根长对Sb(OH)5的响应最敏感。基于所得络合平衡常数的BLM能够较好地预测Sb(Ⅴ)对大麦的毒性。

English Abstract

参考文献 (29)

目录

/

返回文章
返回