雄激素1,4-雄烯二酮和雄烯二酮对斑马鱼胚胎昼夜节律和下丘脑-垂体-性腺轴通路中基因转录表达的影响

马栋栋, 蒋宇霞, 杨雷, 应光国, 史文俊. 雄激素1,4-雄烯二酮和雄烯二酮对斑马鱼胚胎昼夜节律和下丘脑-垂体-性腺轴通路中基因转录表达的影响[J]. 生态毒理学报, 2020, 15(2): 29-38. doi: 10.7524/AJE.1673-5897.20190610001
引用本文: 马栋栋, 蒋宇霞, 杨雷, 应光国, 史文俊. 雄激素1,4-雄烯二酮和雄烯二酮对斑马鱼胚胎昼夜节律和下丘脑-垂体-性腺轴通路中基因转录表达的影响[J]. 生态毒理学报, 2020, 15(2): 29-38. doi: 10.7524/AJE.1673-5897.20190610001
Ma Dongdong, Jiang Yuxia, Yang Lei, Ying Guangguo, Shi Wenjun. Effect of Androstadienedione and Androstenedione on Transcription of Genes in Circadian Rhythm and Hypothalamic-pituitary-gonadal Axis in Zebrafish Embryos[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 29-38. doi: 10.7524/AJE.1673-5897.20190610001
Citation: Ma Dongdong, Jiang Yuxia, Yang Lei, Ying Guangguo, Shi Wenjun. Effect of Androstadienedione and Androstenedione on Transcription of Genes in Circadian Rhythm and Hypothalamic-pituitary-gonadal Axis in Zebrafish Embryos[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 29-38. doi: 10.7524/AJE.1673-5897.20190610001

雄激素1,4-雄烯二酮和雄烯二酮对斑马鱼胚胎昼夜节律和下丘脑-垂体-性腺轴通路中基因转录表达的影响

    作者简介: 马栋栋(1991-),男,硕士研究生,研究方向为环境毒理学,E-mail:madong9110@163.com
  • 基金项目:

    国家自然科学基金资助项目(41807480);中国博士后科学基金面上项目(2018M643116);华南师范大学研究生创新计划资助项目(2018LKXM018)

  • 中图分类号: X171.5

Effect of Androstadienedione and Androstenedione on Transcription of Genes in Circadian Rhythm and Hypothalamic-pituitary-gonadal Axis in Zebrafish Embryos

  • Fund Project:
  • 摘要: 雄激素1,4-雄烯二酮(androstadienedione, ADD)和雄烯二酮(androstenedione, AED)主要用于人类和牲畜疾病的预防和治疗。近年来,ADD和AED的大量使用导致其在河流中广泛检出,甚至在多种鱼类体内亦有检出,且浓度较高。ADD和AED已被证实对鱼类具有生殖毒性和发育毒性,但ADD和AED在转录水平上对鱼类的影响鲜有报道。为探究ADD和AED分子水平毒性,本研究考察了斑马鱼胚胎暴露于ADD(4.48、30.0和231 ng L−1)和AED(3.64、21.7和230 ng L−1)144 h后,对其昼夜节律和下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis, HPG axis)通路中基因转录表达的影响。结果表明,所有浓度的ADD都显著上调了昼夜节律通路中生物钟基因(per1b)、核受体亚族1的D群基因(nr1d2b)、隐花色素基因(cry5)和si:ch211-132b12.7的转录水平,30.0和231 ng L−1的ADD下调了时钟节律调节因子基因(clocka)和芳香烃受体核转录蛋白样基因(arntl2)的转录水平。3.64 ng L−1 AED显著增强了per1bnr1d2b的转录表达。此外在HPG轴中,30.0 ng L−1 ADD显著降低了促黄体生成素V亚基基因(lhb)的转录表达水平,而3.64 ng L−1 AED显著上调了lhb的转录表达水平。值得注意的是,4.48 ng L−1 ADD和3.64 ng L−1 AED均显著降低了细胞色素P450的11亚族基因(cyp11b)的转录表达水平。上述研究表明,ADD和AED对昼夜节律和HPG轴中相关基因的转录表达有显著性影响,对斑马鱼具有潜在的内分泌干扰风险。
  • 加载中
  • Fent K. Progestins as endocrine disrupters in aquatic ecosystems:Concentrations, effects and risk assessment[J]. Environment International, 2015, 84:115-130
    Willi R A, Salgueiro-González N, Faltermann S, et al. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos[J]. Science of the Total Environment, 2019, 672:183-191
    Hou L P, Yang Y, Shu H, et al. Masculinization and reproductive effects in western mosquitofish (Gambusia affinis) after long-term exposure to androstenedione[J]. Ecotoxicology and Environmental Safety, 2018, 147:509-515
    Wang X, Hill D, Tillitt D E, et al. Bisphenol A and 17α-ethinylestradiol-induced transgenerational differences in expression of osmoregulatory genes in the gill of medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2019, 211:227-234
    Streck G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6):635-652
    Chang H, Wu S, Hu J, et al. Trace analysis of androgens and progestogens in environmental waters by ultra-performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1195(1-2):44-51
    Chang H, Wan Y, Hu J. Determination and source apportionment of five classes of steroid hormones in urban rivers[J]. Environmental Science & Technology, 2009, 43(20):7691-7698
    Chang H, Wan Y, Wu S, et al. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters:Comparison to estrogens[J]. Water Research, 2011, 45(2):732-740
    Liu S, Ying G G, Zhao J L, et al. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(10):1367-1378
    Liu S, Ying G G, Zhao J L, et al. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants[J]. Journal of Environmental Monitoring, 2012, 14(2):482-491
    Liu S, Chen H, Xu X R, et al. Steroids in marine aquaculture farms surrounding Hailing Island, South China:Occurrence, bioconcentration, and human dietary exposure[J]. Science of the Total Environment, 2015, 502:400-407
    Liu S, Xu X R, Qi Z H, et al. Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption[J]. Environmental Pollution, 2017, 228:72-81
    Zhang K, Fent K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by highperformance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Science of the Total Environment, 2018, 610:1164-1172
    Zhang J N, Ying G G, Yang Y Y, et al. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China[J]. Chemosphere, 2018, 201:644-654
    Vulliet E, Cren-Olivé C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption[J]. Environmental Pollution, 2011, 159(10):2929-2934
    Fan Z, Wu S, Chang H, et al. Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant:Comparison to estrogens[J]. Environmental Science & Technology, 2011, 45(7):2725-2733
    韩伟,李艳霞,杨明,等.环境雄激素的危害、来源与环境行为[J].生态学报, 2010, 30(6):1594-1603

    Han W, Li Y X, Yang M, et al. Effects, sources and behaviors of environmental androgens[J]. Acta Ecologica Sinica, 2010, 30(6):1594-1603(in Chinese)

    Bain P A, Ogino Y, Miyagawa S, et al. Differential ligand selectivity of androgen receptors α and β from Murray-Darling rainbowfish (Melanotaenia fluviatilis)[J]. General and Comparative Endocrinology, 2015, 212:84-91
    Stanko J P, Angus R A. In vivo assessment of the capacity of androstenedione to masculinize female mosquitofish (Gambusia affinis) exposed through dietary and static renewal methods[J]. Environmental Toxicology and Chemistry, 2007, 26(5):920-926
    Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish:An overview of genetic, physiological, and environmental influences[J]. Aquaculture, 2002, 208(3-4):191-364
    Jenkins R, Angus R A, McNatt H, et al. Identification of androstenedione in a river containing paper mill effluent[J]. Environmental Toxicology and Chemistry:An International Journal, 2001, 20(6):1325-1331
    Parks L G, Lambright C S, Orlando E F, et al. Masculinization of female mosquitofish in agonist activity[J]. Toxicological Sciences, 2001, 62(2):257-267
    Fent K, Siegenthaler P F, Schmid A A. Transcriptional effects of androstenedione and 17α-hydroxyprogesterone in zebrafish embryos[J]. Aquatic Toxicology, 2018, 202:1-5
    古明宗,曾科,杨华杰,等.反式雄烯二酮对食蚊鱼的生长发育和第二性征的影响[J].湖南农业科学, 2017(1):63-67 Gu M Z, Zeng K, Yang H J, et al. The toxic effects of androgen trans-androstenedione on the growth and the secondary sex characteristic of Gambusia affinis[J]. Hunan Agricultural Sciences, 2017

    (1):63-67(in Chinese)

    常菊花.丁草胺对斑马鱼的内分泌干扰效应研究[D].南京:南京农业大学, 2012:1-113 Chang J H. Endocrine disrupting effects of butachlor on zebrafish (Danio rerio)[D]. Nanjing:Nanjing Agricultural University, 2012:1

    -113(in Chinese)

    Ruf F, Sealfon S C. Genomics view of gonadotrope signaling circuits[J]. Trends in Endocrinology & Metabolism, 2004, 15(7):331-338
    Gachon F, Nagoshi E, Brown S A, et al. The mammalian circadian timing system:From gene expression to physiology[J]. Chromosoma, 2004, 113(3):103-112
    Shi W J, Jiang Y X, Huang G Y, et al. Dydrogesterone causes male bias and accelerates sperm maturation in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2018, 52(15):8903-8911
    Liang Y Q, Huang G Y, Zhen Z, et al. The effects of binary mixtures of estradiol and progesterone on transcriptional expression profiles of genes involved in hypothalamic-pituitary-gonadal axis and circadian rhythm signaling in embryonic zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2019, 174:540-548
    Shi W J, Ying G G, Huang G Y, et al. Transcriptional and biochemical alterations in zebrafish eleuthero-embryos (Danio rerio) after exposure to synthetic progestogen dydrogesterone[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(1):39-45
    Huang G Y, Ying G G, Liang Y Q, et al. Hormonal effects of tetrabromobisphenol A using a combination of in vitro and in vivo assays[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2013, 157(4):344-351
    Huang G Y, Ying G G, Liang Y Q, et al. Effects of steroid hormones on reproduction-and detoxification-related gene expression in adult male mosquitofish,(Gambusia affinis)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2013, 158(1):36-43
    Liang Y Q, Huang G Y, Zhao J L, et al. Transcriptional alterations induced by binary mixtures of ethinylestradiol and norgestrel during the early development of zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 195:60-67
    Liang Y Q, Huang G Y, Liu S S, et al. Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2015, 160:172-179
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408
    Ko C H, Takahashi J S. Molecular components of the mammalian circadian clock[J]. Human Molecular Genetics, 2006, 15(suppl2):R271-R277
    Tamai T K, Young L C, Whitmore D. Light signaling to the zebrafish circadian clock by Cryptochrome 1a[J]. Proceedings of the National Academy of Sciences, 2007, 104(37):14712-14717
    Huang D, Wang M, Yin W, et al. Zebrafish lacking circadian gene per2 exhibit visual function deficiency[J]. Frontiers in Behavioral Neuroscience, 2018, 12:53
    Frøland Steindal I A, Whitmore D. Circadian clocks in fish-What have we learned so far?[J]. Biology, 2019, 8(1):17
    Busby E R, Roch G J, Sherwood N M. Endocrinology of Zebrafish:A Small Fish with a Large Gene Pool[M]//Fish Physiology. Academic Press, 2010, 29:173-247
    Tokarz J, Möller G, de Angelis M H, et al. Zebrafish and steroids:What do we know and what do we need to know?[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2013, 137:165-173
  • 加载中
计量
  • 文章访问数:  3028
  • HTML全文浏览数:  3028
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-10

雄激素1,4-雄烯二酮和雄烯二酮对斑马鱼胚胎昼夜节律和下丘脑-垂体-性腺轴通路中基因转录表达的影响

    作者简介: 马栋栋(1991-),男,硕士研究生,研究方向为环境毒理学,E-mail:madong9110@163.com
  • 1. 华南师范大学环境研究院, 广东省化学污染与环境安全重点实验室, 华南师范大学环境理论化学教育部重点实验室, 广州 510006;
  • 2. 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州 510640
基金项目:

国家自然科学基金资助项目(41807480);中国博士后科学基金面上项目(2018M643116);华南师范大学研究生创新计划资助项目(2018LKXM018)

摘要: 雄激素1,4-雄烯二酮(androstadienedione, ADD)和雄烯二酮(androstenedione, AED)主要用于人类和牲畜疾病的预防和治疗。近年来,ADD和AED的大量使用导致其在河流中广泛检出,甚至在多种鱼类体内亦有检出,且浓度较高。ADD和AED已被证实对鱼类具有生殖毒性和发育毒性,但ADD和AED在转录水平上对鱼类的影响鲜有报道。为探究ADD和AED分子水平毒性,本研究考察了斑马鱼胚胎暴露于ADD(4.48、30.0和231 ng L−1)和AED(3.64、21.7和230 ng L−1)144 h后,对其昼夜节律和下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis, HPG axis)通路中基因转录表达的影响。结果表明,所有浓度的ADD都显著上调了昼夜节律通路中生物钟基因(per1b)、核受体亚族1的D群基因(nr1d2b)、隐花色素基因(cry5)和si:ch211-132b12.7的转录水平,30.0和231 ng L−1的ADD下调了时钟节律调节因子基因(clocka)和芳香烃受体核转录蛋白样基因(arntl2)的转录水平。3.64 ng L−1 AED显著增强了per1bnr1d2b的转录表达。此外在HPG轴中,30.0 ng L−1 ADD显著降低了促黄体生成素V亚基基因(lhb)的转录表达水平,而3.64 ng L−1 AED显著上调了lhb的转录表达水平。值得注意的是,4.48 ng L−1 ADD和3.64 ng L−1 AED均显著降低了细胞色素P450的11亚族基因(cyp11b)的转录表达水平。上述研究表明,ADD和AED对昼夜节律和HPG轴中相关基因的转录表达有显著性影响,对斑马鱼具有潜在的内分泌干扰风险。

English Abstract

参考文献 (41)

目录

/

返回文章
返回