环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性

丁希胜, 马徐发, 余丽琴. 环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性[J]. 生态毒理学报, 2020, 15(2): 50-60. doi: 10.7524/AJE.1673-5897.20190213001
引用本文: 丁希胜, 马徐发, 余丽琴. 环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性[J]. 生态毒理学报, 2020, 15(2): 50-60. doi: 10.7524/AJE.1673-5897.20190213001
Ding Xisheng, Ma Xufa, Yu Liqin. Neurodevelopmental Toxicity of Zebrafish Offspring after Multigenerational Exposure to Tris (1,3-dichloro-2-propyl) phosphate at Environmental Concentrations[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 50-60. doi: 10.7524/AJE.1673-5897.20190213001
Citation: Ding Xisheng, Ma Xufa, Yu Liqin. Neurodevelopmental Toxicity of Zebrafish Offspring after Multigenerational Exposure to Tris (1,3-dichloro-2-propyl) phosphate at Environmental Concentrations[J]. Asian Journal of Ecotoxicology, 2020, 15(2): 50-60. doi: 10.7524/AJE.1673-5897.20190213001

环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性

    作者简介: 丁希胜(1992-),男,硕士研究生,研究方向为水生态毒理学与环境健康,E-mail:18202713770@163.com
  • 基金项目:

    国家自然科学基金面上项目(21677057);国家自然科学基金青年项目(21307162)

  • 中图分类号: X171.5

Neurodevelopmental Toxicity of Zebrafish Offspring after Multigenerational Exposure to Tris (1,3-dichloro-2-propyl) phosphate at Environmental Concentrations

  • Fund Project:
  • 摘要: 为探究环境剂量磷酸三(1,3-二氯异丙基)酯(TDCIPP)多代暴露对生物体的影响,选取斑马鱼为模型,研究了斑马鱼暴露于0、3、30和300 ng L−1 TDCIPP至3代后,对每一代子代5 dpf仔鱼神经发育的毒性效应。研究结果表明,F0代暴露于300 ng L−1 TDCIPP 120 d后所产F1代仔鱼的孵化率显著性下降,存活率显著性降低;但对F2代和F3代仔鱼的这些终点指标均无显著性影响。运动行为结果表明,F0代暴露于3和300 ng L−1 TDCIPP 120 d会导致F1代仔鱼在光暗周期刺激下的游泳速度受到抑制,并伴随着神经元发育基因(ngn1)以及轴突生长标志基因(α1-tubulinnetrin1bzn5)的显著性上调,相关性分析表明,游泳速度的抑制与ngn1α1-tubulinzn5这3个基因的表达显著相关。但对F2代仔鱼,仅300 ng L−1 TDCIPP导致其游泳速度在黑暗刺激下显著性下降,且导致神经发育和再生相关基因(elavl3gap43gfapshha)表达量显著性下降,但游泳速度的下降与基因表达无显著相关性。继续暴露至F3代仔鱼时,TDCIPP暴露对运动行为不再有显著影响。研究表明,环境剂量TDCIPP多代暴露对子代仔鱼具有神经发育毒性,表现为运动行为受损和神经发育相关基因表达量的改变,但毒性效应随着暴露代数的增加而减弱。
  • 加载中
  • Reemtsm T, Quintana J B, Rodil R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J]. TrAC Trends in Analytical Chemistry, 2008, 27(9):727-737
    蔡哲,张宏,贺红武.有机磷阻燃剂研究新进展[J].精细化工中间体, 2010, 40(4):6-13

    Cai Z, Zhang H, He H W. Recent achievements of organophosphorus flame retardants[J]. Fine Chemical Intermediates, 2010, 40(4):6-13(in Chinese)

    Dishaw L V, Powers C M, Ryde I T, et al. Is the pentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant?Studies in PC12 cells[J]. Toxicology & Applied Pharmacology, 2011, 256(3):281-289
    Veen I V D, Boer J D. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153
    Sundkvist A M, Olofsson U, Haglund P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk[J]. Journal of Environmental Monitoring, 2010, 12(4):943-951
    Cao S, Zeng X, Song H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China[J]. Environmental Toxicology & Chemistry, 2012, 31(7):1478-1484
    Wang X W, Liu J F, Yin Y G. Development of an ultrahigh-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38):6705-6711
    Hu M, Li J, Zhang B, et al. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China[J]. Marine Pollution Bulletin, 2014, 86(1-2):569-574
    Liu X, Xiong L, Li D, et al. Monitoring and exposure assessment of organophosphorus flame retardants in source and drinking water, Nanjing, China[J]. Environmental Monitoring and Assessment, 2019, 191(2):119-
    Ma Y, Cui K, Zeng F, et al. Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples[J]. Analytica Chimica Acta, 2013, 786(5):47-53
    Li R W, Zhou P J, Guo Y Y, et al. Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells[J]. NeuroToxicology, 2017, 58:1-10
    Li R W, Zhou P J, Guo Y Y, et al. Tris (1,3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells:Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways[J].Food and Chemical Toxicology, 2017, 100:183-196
    Ta N, Li C N, Fang Y J, et al. Toxicity of TDCPP and TCEP on PC12 cell:Changes in CAMKII, GAP43, tubulin and NF-H gene and protein levels[J]. Toxicology Letters, 2014, 227(3):164-171
    Yuan L, Li J, Zha J, et al.Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)[J]. Environmental Pollution, 2015, 208(Pt B):670-677
    Wang Q, Lam C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115
    Wang Q, Lai L S, Wang X, et al. Bioconcentration and transfer of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology, 2015, 49(8):5123-5132
    Dishaw L V, Hunter D L, Padnos B, et al. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio)[J]. Toxicological Sciences, 2014, 142(2):445-454
    Jarema K A, Hunter D L, Shaffer R M, et al. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):194-209
    Noyes P D, Haggard D E, Gonnerman G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants[J]. Toxicological Sciences, 2015, 145(1):177-195
    Cheng R, Jia Y, Dai L, et al. Tris (1,3-dichloro-2-propyl) phosphate disrupts axonal growth, cholinergic system and motor behavior in early life zebrafish[J]. Aquatic Toxicology, 2017, 192:7-15
    Oliveri A N, Ortiz E, Levin E D. Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae[J]. Neurotoxicology and Teratology, 2018, 67:25-30
    Fan C Y, Cowden J, Simmons S O, et al. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening[J]. Neurotoxicology and Teratology, 2010, 32(1):91-98
    Kim C H, Ueshima E, Muraoka O, et al. Zebrafish elav/HuC homologue as a very early neuronal marker[J].Neuroscience Letters, 1996, 216(2):109-112
    Ma Q, Kintner C, Anderson D J. Identification of neurogenin, a vertebrate neuronal determination gene[J]. Cell, 1996, 87(1):43-52
    Baas P W. Microtubules and axonal growth[J]. Current Opinion in Cell Biology, 1997, 9(1):29-36
    Udvadia A J, Köster R W, Skene J H. GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration[J]. Development, 2001, 128(7):1175-1182
    Lauderdale J D, Davis N M, Kuwada J Y. Axon tracts correlate with netrin-1a expression in the zebrafish embryo[J]. Molecular and Cellular Neuroscience, 1997, 9(4):293-313
    Beattie C E, Hatta K, Halpern M E, et al. Temporal separation in the specification of primary and secondary motoneurons in zebrafish[J]. Developmental Biology, 1997, 187(2):180-182
    Fashena D, Westerfield M. Secondary motoneuron axons localize DM-GRASP on their fasciculated segments[J]. The Journal of Comparative Neurology, 1999, 406(3):415-424
    Charron F, Stein E, Jeong J, et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance[J]. Cell, 2003, 113(1):20-23
    Kolpak A. Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration[J]. Journal of Neuroscience, 2005, 25(13):3432-3441
    Nielsen A L, Jørgensen A L. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP[J]. Gene, 2003, 310(1):123-132
    Brösamle C, Halpern M E. Characterization of myelination in the developing zebrafish[J]. Glia, 2002, 39(1):47-57
    Yu L, Lam J C, Guo Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659
    Yu L, Deng J, Shi X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae[J]. Aquatic Toxicology, 2010, 97(3):230-233
    Yu L, Jia Y, Su G, et al. Parental transfer of tris (1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations[J]. Environmental Pollution, 2017, 220(Pt A):196-203
    Zhu Y, Ma X, Su G, et al. Environmentally relevant concentrations of the flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) inhibits growth of female zebrafish and decreases fecundity[J]. Environmental Science & Technology, 2015, 49(24):14579-14587
    Zhang Y, Li M, Li S, et al. Exposure to tris (1,3-dichloro-2-propyl) phosphate for two generations decreases fecundity of zebrafish at environmentally relevant concentrations[J]. Aquatic Toxicology, 2018, 200:178-187
    Rice D, Barone S. Critical periods of vulnerability for the developing nervous system:Evidence from humans and animal models[J]. Environmental Health Perspectives, 2000, 108(suppl 3):511-533
    Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish[J]. Progress inNeurobiology, 2002, 68(2):85-111
    Rao J V, Begum G, Pallela R, et al. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos[J]. International Journal of Environmental Research and Public Health, 2005, 2(3):478-483
    Oliveri A N, Bailey J M, Levin E D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):220-227
    Chen X, Huang C, Wang X, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish[J]. Aquatic Toxicology, 2012, 120-121:35-44
    Chen X, Dong Q, Chen Y, et al. Effects of dechlorane plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish[J]. Environmental Pollution, 2017, 224:7-15
  • 加载中
计量
  • 文章访问数:  2244
  • HTML全文浏览数:  2244
  • PDF下载数:  74
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-13

环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性

    作者简介: 丁希胜(1992-),男,硕士研究生,研究方向为水生态毒理学与环境健康,E-mail:18202713770@163.com
  • 1. 华中农业大学水产学院, 武汉 430070;
  • 2. 湖北省池塘养殖工程实验室, 武汉 430070
基金项目:

国家自然科学基金面上项目(21677057);国家自然科学基金青年项目(21307162)

摘要: 为探究环境剂量磷酸三(1,3-二氯异丙基)酯(TDCIPP)多代暴露对生物体的影响,选取斑马鱼为模型,研究了斑马鱼暴露于0、3、30和300 ng L−1 TDCIPP至3代后,对每一代子代5 dpf仔鱼神经发育的毒性效应。研究结果表明,F0代暴露于300 ng L−1 TDCIPP 120 d后所产F1代仔鱼的孵化率显著性下降,存活率显著性降低;但对F2代和F3代仔鱼的这些终点指标均无显著性影响。运动行为结果表明,F0代暴露于3和300 ng L−1 TDCIPP 120 d会导致F1代仔鱼在光暗周期刺激下的游泳速度受到抑制,并伴随着神经元发育基因(ngn1)以及轴突生长标志基因(α1-tubulinnetrin1bzn5)的显著性上调,相关性分析表明,游泳速度的抑制与ngn1α1-tubulinzn5这3个基因的表达显著相关。但对F2代仔鱼,仅300 ng L−1 TDCIPP导致其游泳速度在黑暗刺激下显著性下降,且导致神经发育和再生相关基因(elavl3gap43gfapshha)表达量显著性下降,但游泳速度的下降与基因表达无显著相关性。继续暴露至F3代仔鱼时,TDCIPP暴露对运动行为不再有显著影响。研究表明,环境剂量TDCIPP多代暴露对子代仔鱼具有神经发育毒性,表现为运动行为受损和神经发育相关基因表达量的改变,但毒性效应随着暴露代数的增加而减弱。

English Abstract

参考文献 (44)

目录

/

返回文章
返回