农药对秀丽隐杆线虫毒性效应及其机制的研究进展

华欣, 陈海波, 李杰, 向明灯, 王亚娥, 于云江. 农药对秀丽隐杆线虫毒性效应及其机制的研究进展[J]. 生态毒理学报, 2020, 15(1): 34-43. doi: 10.7524/AJE.1673-5897.20190127001
引用本文: 华欣, 陈海波, 李杰, 向明灯, 王亚娥, 于云江. 农药对秀丽隐杆线虫毒性效应及其机制的研究进展[J]. 生态毒理学报, 2020, 15(1): 34-43. doi: 10.7524/AJE.1673-5897.20190127001
Hua Xin, Chen Haibo, Li Jie, Xiang Mingdeng, Wang Ya'e, Yu Yunjiang. Review on Toxicology of Pesticides in the Nematode Caenorhabditis elegans[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 34-43. doi: 10.7524/AJE.1673-5897.20190127001
Citation: Hua Xin, Chen Haibo, Li Jie, Xiang Mingdeng, Wang Ya'e, Yu Yunjiang. Review on Toxicology of Pesticides in the Nematode Caenorhabditis elegans[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 34-43. doi: 10.7524/AJE.1673-5897.20190127001

农药对秀丽隐杆线虫毒性效应及其机制的研究进展

    作者简介: 华欣(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:593161086@qq.com
  • 基金项目:

    国家自然科学基金资助项目(21876059);国家重点研发计划资助项目(2018YFC1801102);中央级公益性科研院所基本科研业务专项(PM-zx703-201803-071)

  • 中图分类号: X171.5

Review on Toxicology of Pesticides in the Nematode Caenorhabditis elegans

  • Fund Project:
  • 摘要: 随着大量农药被广泛的使用并最终汇聚到环境介质中,对生态环境和人体健康产生潜在影响。秀丽隐杆线虫(Caenorhabditis elegans)是土壤中最丰富的后生动物,在土壤生态系统中具有重要地位,并作为一种重要的模式生物广泛应用于环境毒理学研究。本文从秀丽隐杆线虫常用的毒理学研究方法入手,以致死率、生长发育、运动行为、繁殖、活性氧自由基(ROS)水平、细胞凋亡水平、相关基因表达量和蛋白水平等作为测试指标,归纳总结农药对秀丽隐杆线虫的衰老性、神经及生殖系统的毒性效应,分析探索其毒性机理,并展望了未来的研究重点。
  • 加载中
  • Xu T, Zhang M, Hu J, et al. Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements[J]. Chemosphere, 2017, 181:55-62
    Garcia-Espineira M, Tejeda-Benitez L, Olivero-Verbel J, et al. Toxicity of atrazine-and glyphosate-based formulations on Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2018, 156:216-222
    Zhou D, Yang J, Li H, et al. Ecotoxicological evaluation of low-concentration bisphenol A exposure on the soil nematode Caenorhabditis elegans and intrinsic mechanisms of stress response in vivo[J]. Environmental Toxicology and Chemistry, 2016, 35(8):2041-2047
    朱天纵.浅谈农药分类[J].农药科学与管理, 1990(1):45-46
    Chawla P, Kaushik R, Shiva Swaraj V J, et al. Organophosphorus pesticides residues in food and their colorimetric detection[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10:292-307
    卜元卿,孔源,智勇,等.化学农药对环境的污染及其防控对策建议[J].中国农业科技导报, 2014, 16(2):19-25

    Bu Y Q, Kong Y, Zhi Y, et al. Pollution of chemical pesticides on environment and suggestion for prevention and control countermeasures[J]. Journal of Agricultural Science and Technology, 2014, 16(2):19-25(in Chinese).

    Marine Déserta S R, Grégory Gilleb, Angélina Quinapallo, et al. Spatial and temporal distribution of current-use pesticides in ambient air of Provence-Alpes-Côte-d'Azur Region and Corsica, France[J]. Atmospheric Environment, 2018, 192:241-256
    窦磊,杨国义.珠江三角洲地区土壤有机氯农药分布特征及风险评价[J].环境科学, 2015, 36(8):2954-2963

    Dou L,Yang G Y. Distribution characteristics and risk assessment of organochlorine pesticides in surface soil of Pearl River Delta Economic Zone[J]. Environmental Science, 2015, 36(8):2954-2963(in Chinese)

    Deknock A, de Troyer N, Houbraken M, et al. Distribution of agricultural pesticides in the freshwater environment of the Guayas River Basin (Ecuador)[J]. Science of the Total Environment, 2019, 646:996-1008
    连子如,王江涛,谭丽菊,等.青岛近海生物体内多环芳烃、多氯联苯和有机氯农药的含量和分布特征[J].生态毒理学报, 2010, 5(5):746-751

    Liang Z R, Wang J T, Tang L J, et al. Concentrations and distribution characteristic of PAHs, PCBs and OCPs in the marine organisms of Qingdao Coastal Area[J]. Asian Journal of Ecotoxicology, 2010, 5(5):746-751(in Chinese)

    张力,张静姝,姜淑卿,等.我国农产品农药残留现状及农药联合毒性研究进展[J].职业与健康, 2016, 32(4):569-572

    Zhang L, Zhang J S, Jiang S Q, et al. Current situation of pesticide residues in agricultural products in China and research progress of combined toxicity of pesticides[J]. Occupation and Health, 2016, 32(4):569-572(in Chinese)

    Pathak R, Suke S G, Ahmed R S, et al. Endosulfan and other organochlorine pesticide residues in maternal and cord blood in North Indian population[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(2):216-219
    柯常亮,林钦,甘居利,等.环境中有机农药吸附热力学模型及吸附影响因素[J].南方水产科学, 2013, 9(1):68-73

    Ke C L, Lin Q, Gan J L, et al. Thermodynamic model and impact factors for organic pesticide adsorption in environment[J]. South China Fisheries Science, 2013, 9(1):68-73(in Chinese)

    Luo D, Zhou T T, Tao Y, et al. Exposure to organochlorine pesticides and non-Hodgkin lymphoma:A meta-analysis of observational studies[J]. Scientific Reports, 2016, 6:25768
    Park S, Kim S K, Kim J Y, et al. Exposure to pesticides and the prevalence of diabetes in a rural population in Korea[J]. Neurotoxicology, 2018, 70:12-18
    Leelaja B C, Rajini P S. Biochemical and physiological responses in Caenorhabditis elegans exposed to sublethal concentrations of the organophosphorus insecticide, monocrotophos[J]. Ecotoxicology and Environmental Safety, 2013, 94:8-13
    Nidheesh T, Salim C, Rajini P S, et al. Antioxidant and neuroprotective potential of chitooligomers in Caenorhabditis elegans exposed to monocrotophos[J]. Carbohydrate Polymers, 2016, 135:138-144
    田雨,汝少国,王蔚,等.久效磷对秀丽隐杆线虫运动、学习和觅食行为的影响[J].环境科学研究, 2015, 28(2):275-282

    Tian Y, Ru S G, Wang W, et al. Effects of monocrotophos on the locomotion, learning and foraging behavior of Caenorhabditis elegans[J]. Research of Environmental Sciences, 2015, 28(2):275-282(in Chinese)

    王春花,李朝品,何梅.乐果对秀丽隐杆线虫生活史特征的影响[J].生态毒理学报, 2015, 10(2):332-337

    Wang C H, Li C P, He M. Effects of dimethoate on lifecycle traits of Caenorhabditis elegans[J]. Asian Journal of Ecotoxicology, 2015, 10(2):332-337(in Chinese)

    Anbalagan C, Lafayette I, Antoniou-Kourounioti M, et al. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils[J]. Ecotoxicology, 2013, 22(1):72-85
    Jadhav K B, Rajini P S. Evaluation of sublethal effects of dichlorvos upon Caenorhabditis elegans based on a set of end points of toxicity[J]. Journal of Biochemical and Molecular Toxicology, 2009, 23(1):9-17
    李煜,杨可欣,高珊,等.基于秀丽隐杆线虫的化学品急性毒性检测及评价[J].毒理学杂志, 2013, 27(2):79-84

    Li Y, Yang K Q, Gao S, et al. Acute toxicity testing and evaluation of chemicals based on Caenorhabditis elegans[J]. Journal of Toxicology, 2013, 27(2):79-84(in Chinese)

    Jadiya P, Nazir A. Environmental toxicants as extrinsic epigenetic factors for Parkinsonism:Studies employing transgenic C. elegans model[J]. CNS & Neurological Disorders-Drug Targets, 2012, 11(8):976-983
    Ruan Q L, Ju J J, Li Y H, et al. Chlorpyrifos exposure reduces reproductive capacity owing to a damaging effect on gametogenesis in the nematode Caenorhabditis elegans[J]. Journal of Applied Toxicology, 2012, 32(7):527-535
    Ruan Q L, Ju J J, Li Y H, et al. Evaluation of pesticide toxicities with differing mechanisms using Caenorhabditis elegans[J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72:746-751
    王云彪,李润琴,邓茗芩,等.砷与农药草甘膦、敌敌畏对秀丽隐杆线虫的联合毒性[J].生态毒理学报, 2013, 8(2):262-267

    Wang Y B, Li R Q, Deng M Q, et al. Joint toxicity of arsenic, glyphosate and dichlorvos to C. elegans[J]. Asian Journal of Ecotoxicology, 2013, 8(2):262-267(in Chinese)

    Kamaladevi A, Ganguli A, Balamurugan K. Lactobacillus casei stimulates phase-Ⅱ detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2016, 179:19-28
    Kamaladevi A, Ganguli A, Kumar M, et al. Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans[J]. Pesticide Biochemistry and Physiology, 2013, 105(3):213-223
    韩焱,杨慧敏,宋少娟,等.马拉硫磷对秀丽隐杆线虫的急性毒性研究[J].山西大学学报:自然科学版, 2012, 35(3):563-567

    Hang Y, Yang H M, Song S J, et al. Acute toxicological effects of malathion on nematode Caenorhabditis elegans[J]. Journal of Shanxi University:Natural Science Edition, 2012, 35(3):563-567(in Chinese)

    Shashikumar S, Rajini P S. Cypermethrin-induced alterations in vital physiological parameters and oxidative balance in Caenorhabditis elegans[J]. Pesticide Biochemistry and Physiology, 2010, 97(3):235-242
    阮秦莉,居静娟,李云晖,等.氯氰菊酯对模式动物秀丽隐杆线虫生殖能力的损伤作用[J].癌变·畸变·突变, 2012, 24(2):136-140

    Ruan Q L, Ju J J, Li Y H, et al. Reduction of reproductive capacity of model Caenorhabditis elegans induced by cypermethrin exposure[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2012, 24(2):136-140(in Chinese)

    Du H, Wang M M, Wang L, et al. Reproductive toxicity of endosulfan:Implication from germ cell apoptosis modulated by mitochondrial dysfunction and genotoxic response genes in Caenorhabditis elegans[J]. Toxicological Sciences, 2015, 145(1):118-127
    Zeng R, Yu X, Tan X, et al. Deltamethrin affects the expression of voltage-gated calcium channel alpha1 subunits and the locomotion, egg-laying, foraging behavior of Caenorhabditis elegans[J]. Pesticide Biochemistry and Physiology, 2017, 138:84-90
    Bian T, Zhu X, Guo J, et al. Toxic effect of the novel chiral insecticide IPP and its biodegradation intermediate in nematode Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2018, 164:604-610
    Roh J Y, Choi J. Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2008, 71(2):483-489
    Bezchlebova J, Cernohlavkova J, Lana J, et al. Effects of toxaphene on soil organisms[J]. Ecotoxicology and Environmental Safety, 2007, 68(3):326-334
    Sochova I, Hofman J, Holoubek I. Effects of seven organic pollutants on soil nematode Caenorhabditis elegans[J]. Environment International, 2007, 33(6):798-804
    Negga R, Rudd D A, Davis N S, et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans[J]. Neurotoxicology, 2011, 32(3):331-341
    Guo X, Li Q, Shi J, et al. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage[J]. Chemosphere, 2016, 155:115-126
    Lenz K A, Pattison C, Ma H, et al. Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans[J]. Environmental Pollution, 2017, 231(1):462-470
    张燕芬,王大勇.利用模式动物秀丽线虫建立环境毒物毒性的评估研究体系[J].生态毒理学报, 2008, 3(4):313-322

    Zhang Y F, Wang D Y. Establishment of toxicity evaluation system using model organism of Caenorhabditis elegans[J]. Asian Journal of Ecotoxicology, 2008, 3(4):313-322(in Chinese)

    Denzel M S, Lapierre L R, Mack H I D, et al. Emerging topics in C. elegans aging research:Transcriptional regulation, stress response and epigenetics[J]. Mechanisms of Ageing and Development, 2018, 177:4-21
    Rajini P S, Melstrom P, Williams P L, et al. A comparative study on the relationship between various toxicological endpoints in Caenorhabditis elegans exposed to organophosphorus insecticides[J]. Journal of Toxicology and Environmental Health, Part A, 2008, 71(15):1043-1050
    Wu S, Lei L, Song Y, et al. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans:The role of mitochondria-associated membrane proteins in Parkinsonism[J]. Experimental Neurology, 2018, 309:67-78
    Roh J Y, Choi J. Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans[J]. Chemosphere, 2011, 84(10):1356-1361
    Yang R L, Rui Q, Kong L, et al. Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans[J]. Toxicology Research, 2016, 5(4):1097-1105
    Leung M C K, Williams P L, Benedetto A, et al. Caenorhabditis elegans:An emerging model in biomedical and environmental toxicology[J]. Toxicological Sciences, 2008, 106(1):5-28
    赵亦周,王香明.帕金森病的秀丽隐杆线虫模型研究进展[J].转化医学杂志, 2017, 6(4):248-251

    Zhao Y Z, Wang X M. Study on the Caenorhabditis elegans model of Parkinson's disease[J]. Translational Medicine Journal, 2017, 6(4):248-251(in Chinese)

    Jadhav K B, Rajini P S. Neurophysiological alterations in Caenorhabditis elegans exposed to dichlorvos, an organophosphorus insecticide[J]. Pesticide Biochemistry and Physiology, 2009, 94(2-3):79-85
    Dwivedi N, Bhutia Y D, Kumar V, et al. Effects of combined exposure to dichlorvos and monocrotophos on blood and brain biochemical variables in rats[J]. Human & Experimental Toxicology, 2010, 29(2):121-129
    Kaletta T, Hengartner M O. Finding function in novel targets:C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5):387-398
    戴抒豪,简子海,刘冉,等.十氯酮诱导氧化应激损伤对秀丽隐杆线虫精细胞影响[J].中国公共卫生, 2018, 34(8):1106-1109

    Dai S H, Jian Z H, Liu R, et al. Influences of chlordecone-induced oxidative stress injury on sperm cells of Caenorhabditis elegans[J]. Chinese Journal of Public Health, 2018, 34(8):1106-1109(in Chinese)

    吕荣荣,屈满,岳营,等.戊唑醇对秀丽线虫的生殖毒性作用[J].癌变·畸变·突变, 2018, 30(3):214-225

    Lv R R, Qu M, Yue Y, et al. Reproductive toxicity of tebuconazole on male Caenorhabditis elegans[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(3):214-225(in Chinese)

    Jones O A, Swain S C, Svendsen C, et al. Potential new method of mixture effects testing using metabolomics and Caenorhabditis elegans[J]. Journal of Proteome Research, 2012, 11(2):1446-1453
  • 加载中
计量
  • 文章访问数:  3742
  • HTML全文浏览数:  3742
  • PDF下载数:  94
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-27

农药对秀丽隐杆线虫毒性效应及其机制的研究进展

    作者简介: 华欣(1995-),女,硕士研究生,研究方向为环境毒理学,E-mail:593161086@qq.com
  • 1. 兰州交通大学环境与市政工程学院, 兰州 730070;
  • 2. 生态环境部华南环境科学研究所, 广州 510535;
  • 3. 国家环境保护环境污染健康风险评价重点实验室, 广州 510535
基金项目:

国家自然科学基金资助项目(21876059);国家重点研发计划资助项目(2018YFC1801102);中央级公益性科研院所基本科研业务专项(PM-zx703-201803-071)

摘要: 随着大量农药被广泛的使用并最终汇聚到环境介质中,对生态环境和人体健康产生潜在影响。秀丽隐杆线虫(Caenorhabditis elegans)是土壤中最丰富的后生动物,在土壤生态系统中具有重要地位,并作为一种重要的模式生物广泛应用于环境毒理学研究。本文从秀丽隐杆线虫常用的毒理学研究方法入手,以致死率、生长发育、运动行为、繁殖、活性氧自由基(ROS)水平、细胞凋亡水平、相关基因表达量和蛋白水平等作为测试指标,归纳总结农药对秀丽隐杆线虫的衰老性、神经及生殖系统的毒性效应,分析探索其毒性机理,并展望了未来的研究重点。

English Abstract

参考文献 (54)

目录

/

返回文章
返回