改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究

王雪, 张立秋, 封莉. 改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究[J]. 环境工程学报, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
引用本文: 王雪, 张立秋, 封莉. 改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究[J]. 环境工程学报, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
Wang Xue, Zhang Liqiu, Feng Li. Removal efficiency of ibuprofen and determination of active sites in catalytic ozonation process by modified SCACs[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
Citation: Wang Xue, Zhang Liqiu, Feng Li. Removal efficiency of ibuprofen and determination of active sites in catalytic ozonation process by modified SCACs[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219

改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究

  • 基金项目:

    国家自然科学基金资助项目(51178046)

  • 中图分类号: X703.1

Removal efficiency of ibuprofen and determination of active sites in catalytic ozonation process by modified SCACs

  • Fund Project:
  • 摘要: 采用不同的表面改性方法(去矿化处理、氧化改性、碱改性和还原改性)对污泥基活性炭(SCAC)进行处理,分别获得了表面金属含量低、碱位低、碱性官能团含量高及Lewis碱含量高的4种改性SCAC(SCAC-D、SCAC-S、SCAC-OH和SCAC-N),对比考察了改性前后SCAC催化臭氧氧化去除布洛芬(IBP)的效能,并探讨了SCAC催化臭氧氧化反应的主要活性位点。结果表明,5种SCAC催化活性顺序为:SCAC-N > SCAC-OH > SCAC > SCAC-S > SCAC-D;金属组分减少会直接影响SCAC的催化活性,碱位减少对其催化活性的影响相对较弱,说明SCAC表面较为丰富的金属组分是其催化臭氧氧化反应的主要活性位点;增加SCAC表面碱位(Lewis碱和碱性官能团),减少表面酸性官能团有助于提高其催化活性。
  • 加载中
  • [1] 张彭义, 余刚, 孙海涛, 等. 臭氧/活性炭协同降解有机物的初步研究. 中国环境科学, 2000, 20(2): 159-162 Zhang Pengyi, Yu Gang, Sun Haitao, et al. Preliminary study on the degradation of organic compound by integrated ozone/activated carbon. China Environmental Science, 2000, 20(2): 159-162 (in Chinese)
    [2] Beltrán F. J., Acedo B., Rivas F. J., et al. Pyruvic acid removal from water by the simultaneous action of ozone and activated carbon. Ozone: Science and Engineering, 2005, 27(2): 159-169
    [3] Faria P. C. C., Órfão J. J. M., Pereira M. F. R. Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Applied Catalysis B: Environmental, 2008, 83(1-2): 150-159
    [4] 高健磊, 刘玥, 高爱华, 等. O3/活性炭预处理克林霉素制药废水的实验研究. 河南化工, 2008, 25(11): 18-20 Gao Jianlei, Liu Yue, Gao Aihua, et al. Study on pretreatment of pharmaceutical waste water of clindamycin by activated carbon catalytic ozonation process. Henan Chemical Industry, 2008, 25(11): 18-20 (in Chinese)
    [5] Sánchez-Polo M., von Gunten U., Rivera-Utrilla J. Efficiency of activated carbon to transform ozone into ·OH radicals: Influence of operational parameters. Water Research, 2005, 39(14): 3189-3198
    [6] Rivera-Utrilla J., Sánchez-Polo M. Ozonation of 1, 3, 6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4): 319-329
    [7] Faria P. C. C., Órfão J. J. M., Pereira M. F. R. Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79(3): 237-243
    [8] Sánchez-Polo M., Rivera-Utrilla J. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1, 3, 6-naphthalenetrisulphonic acid with ozone. Carbon, 2003, 41(2): 303-307
    [9] Li Xukai, Zhang Qiuyun, Tang Lili, et al. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke. Journal of Hazardous Materials, 2009, 163(1): 115-120
    [10] Li Lisheng, Ye Weiying, Zhang Qiuyun, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. Journal of Hazardous Materials, 2009, 170(1): 411-416
    [11] 王益平, 蓝月存, 饶义飞, 等. NiO/AC催化臭氧氧化去除水中的苯酚. 环境工程学报, 2010, 4(11): 2441-2445 Wang Yiping, Lan Yuecun, Rao Yifei, et al. Catalytic ozonation of phenol in aqeuous solution coupled with nickel oxide-loaded activated carbon. Chinese Journal of Environmental Engineering, 2010, 4(11): 2441-2445 ( in Chinese)
    [12] 杨文清, 李旭凯, 李来胜, 等. 活性炭负载金属氧化物催化臭氧氧化甲硝唑. 环境工程学报, 2011, 5(4): 763-766 Yang Wenqing, Li Xukai, Li Laisheng, et al. Catalytic ozonation of metronidazole in presence of activated carbon supported metallic oxide catalyst. Chinese Journal of Environmental Engineering, 2011, 5(4): 763-766 ( in Chinese)
    [13] Tyagi V. K., Lo S. L. Sludge: A waste or renewable source for energy and resources recovery? Renewable and Sustainable Energy Reviews, 2013, 25: 708-728
    [14] Li Wenhong, Yue Qinyan, Gao Baoyu, et al. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 2011, 171(1): 320-327
    [15] Zhao Peitao, Shen Yafei, Ge Shifu, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Conversion and Management, 2014, 78: 815-821
    [16] 包汉峰, 杨维薇, 张立秋, 等. 污泥基活性炭去除水中重金属离子效能与动力学研究. 中国环境科学, 2013, 33(1): 2261-2270 Bao Hanfeng, Yang Weiwei, Zhang Liqiu, et al. Efficiency and kinetics of heavy metal removal from water by sludge-based activated carbon. China Environmental Science, 2013, 33(1): 2261-2270 (in Chinese)
    [17] 李依丽, 李利平, 尹晶, 等. 污泥活性炭对次甲基蓝废水的吸附. 环境工程学报, 2013, 7(8): 3059-3064 Li Yili, Li Liping, Yin Jing, et al. Adsorption of methylene blue dye wastewater by sludge based activated carbon. Chinese Journal of Environmental Engineering, 2013, 7(8): 3059-3064 (in Chinese)
    [18] 王红娟, 齐飞, 封莉, 等. 污泥基活性炭催化臭氧氧化降解水中微量布洛芬的效能研究. 环境科学, 2012, 33(5): 185-190 Wang Hongjuan, Qi Fei, Feng Li, et al. Catalytic ozonation of ibuprofen in aqueous solution by activated carbon made from sludge and corn cob. Environmental Science, 2012, 33(5): 185-190 (in Chinese)
    [19] 李道静. 污泥活性炭制备及其对苯酚和硝基苯吸附特性的研究. 北京: 北京林业大学硕士学位论文, 2011 Li Daojing. Study on sludge activated carbon preparation and its adsorption properties of phenol and nitrobenzene. Beijing: Master Dissertation of Beijing Forestry University, 2011 ( in Chinese)
    [20] Boehm H. P. Surface oxides on carbon and their analysis: A critical assessment. Carbon, 2002, 40(2): 145-149
    [21] Morgan M. E., Jenkins R. G., Walker Jr. P. L. Inorganic constituents in American lignites. Fuel, 1981, 60(3): 189-193
    [22] Shan Xiaomei, Zhu Shuquan, Zhang Wenhui. Effect of surface modification of activated carbon on its adsorption capacity for NH3. Journal of China University of Mining and Technology, 2008, 18(2): 261-265, 274
    [23] 刘桂芳. 表面改性活性炭吸附酚类内?懌捲楰摩?戧秽?琺栆攔?售嘠?吔槨伺?珈甔拨????獚痫扦??憇挬琠椲瘰愰琸攠摌?捵愠片扵潩湦?獮祧献琠敓浴???瀠灯汮椠敡摤??慲瑰慴汩祯獮椠獥?????湥癮楣特漠湡浮敤渠瑭慥汣???ど?????㈠????はぬ?????扤牯?孲??嵥?剤敩祳?????婮慧稠潣?????????慯獮愠獡????????渠晣污畲敢湯据敳?潷晩?瑨栠敶?獲瑩牯畵捳琠畳牵慲汦?慣湥搠?獯畤物晦慩捣敡?捩桯慮爮愠捈瑡敲牢楩獮琺椠捄獯?潴景?愠捄瑩楳癳慥瑲整摡?捩慯牮戠潯湦?潈湡?瑢桩敮?捉慮瑳慴汩祴瑵楴捥?摯敦挠潔浥灣潨獮楯瑬楯潧湹?漠昲‰栰礸搠爨漠杩敮渠?灨敩牮潥硳楥搩攼???灛瀲水楝攠摂??慥瑲愠汈礮猬椠獈?????攣渲攳爳愻氠??㈠い?????ど????????????????扩牮?孷??嵥?删潢摹爠??????杤畩敧穯?剭敥楴湨潯獤漮????呥桲攠?牥潳汥敡?潣晨?挠愱爹戸漱測?洱愵琨攴爩椺愠水猴?椭渴‵栶攼瑢敲爾潛朲攵湝攠潅畲獮?捴愠瑍愮氬礠獌極獲???慆爮戬漠湓??????????????????????ic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Applied Catalysis B: Environmental, 2004, 47(1): 15-25
    [24] Logemann F. P., Annee J. H. J. Water treatment with a fixed bed catalytic ozonation process. Water Science and Technology, 1997, 35(4): 353-360
    [25] Kaptijn J. P. The ecoclear® process. Results from full-scale installations. Ozone: Science and Engineering, 1997, 19(4): 297-305
    [26] Ni C. H., Chen J. N. Heterogeneous catalytic ozonation of 2-chlorophenol aqueous solution with alumina as a catalyst. Water Science and Technology, 2001, 43(2): 213-220
    [27] Qiang Z. M., Ling W. C., Tian F. Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water. Chemosphere, 2013, 90(6): 1966-1972
    [28] Valdés H., Zaror C. A. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties. Journal of Hazardous Materials, 2006, 137(2): 1042-1048
    [29] Kasprzyk-Horderna B., Ziólekb M., Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental, 2003, 46(4): 639-669
    [30] Cao Hongbin, Xing Linlin, Wu Guangguo, et al. Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146: 169-176
    [31] Rivera-Utrilla J., Sánchez-Polo M., Abdel Daiem M. M., et al. Role of activated carbon in the photocatalytic degradation of 2, 4-dichlorophen- oxyacetic
  • 加载中
计量
  • 文章访问数:  2072
  • HTML全文浏览数:  1440
  • PDF下载数:  1188
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-02-21
  • 刊出日期:  2015-02-07
王雪, 张立秋, 封莉. 改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究[J]. 环境工程学报, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
引用本文: 王雪, 张立秋, 封莉. 改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究[J]. 环境工程学报, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
Wang Xue, Zhang Liqiu, Feng Li. Removal efficiency of ibuprofen and determination of active sites in catalytic ozonation process by modified SCACs[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219
Citation: Wang Xue, Zhang Liqiu, Feng Li. Removal efficiency of ibuprofen and determination of active sites in catalytic ozonation process by modified SCACs[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 621-626. doi: 10.12030/j.cjee.20150219

改性SCAC催化臭氧氧化去除布洛芬效能与反应活性位点研究

  • 1. 北京林业大学, 北京市水体污染源控制技术重点实验室, 北京 100083
基金项目:

国家自然科学基金资助项目(51178046)

摘要: 采用不同的表面改性方法(去矿化处理、氧化改性、碱改性和还原改性)对污泥基活性炭(SCAC)进行处理,分别获得了表面金属含量低、碱位低、碱性官能团含量高及Lewis碱含量高的4种改性SCAC(SCAC-D、SCAC-S、SCAC-OH和SCAC-N),对比考察了改性前后SCAC催化臭氧氧化去除布洛芬(IBP)的效能,并探讨了SCAC催化臭氧氧化反应的主要活性位点。结果表明,5种SCAC催化活性顺序为:SCAC-N > SCAC-OH > SCAC > SCAC-S > SCAC-D;金属组分减少会直接影响SCAC的催化活性,碱位减少对其催化活性的影响相对较弱,说明SCAC表面较为丰富的金属组分是其催化臭氧氧化反应的主要活性位点;增加SCAC表面碱位(Lewis碱和碱性官能团),减少表面酸性官能团有助于提高其催化活性。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回